Automated Symbolic Analysis of Security Policies

Anh Truong

Fondazione Bruno Kessler, Trento, Italia University of Trento, Italia

4 A N

- Context
- Security Problem
- ASASP: an Automated Analysis Tool for Access Control Policies
- New Heuristics:
 - Forward Useful Actions
 - Ordering the Actions
- Conclusion

< 🗇 🕨 < 🖃 >

• Access Control: the process of

- mediating requests to resources of a system
- determining if a request should be granted/denied

\implies crucial for system security

A (10) F (10)

- Access Control policies specify which user can access which resource (and how)
- The design and management of access control are difficult, especially in large systems
 - Models (e.g., Role-Based Access Control)

• Access Control: the process of

- mediating requests to resources of a system
- determining if a request should be granted/denied

 \implies crucial for system security

< 🗇 🕨 < 🖻 🕨

- Access Control policies specify which user can access which resource (and how)
- The design and management of access control are difficult, especially in large systems
 - Models (e.g., Role-Based Access Control)

• Access Control: the process of

- mediating requests to resources of a system
- determining if a request should be granted/denied

 \implies crucial for system security

- Access Control policies specify which user can access which resource (and how)
- The design and management of access control are difficult, especially in large systems
 - Models (e.g., Role-Based Access Control)

Simplest Access Control Model

User	Permission
Alice	GrantTenure
Alice	AssignGrades
Alice	ReceiveHBenefits
Alice	UseGym
Bob	GrantTenure
Bob	AssignGrades
Bob	UseGym
Charlie	AssignGrades
Charlie	ReceiveHBenefits
Charlie	UseGym
David	AssignHWScores
David	Register4Courses
David	UseGym
Eve	ReceiveHBenefits
Eve	UseGym
Fred	Register4Courses
Fred	UseGym
Greg	UseGym

æ

イロト イヨト イヨト イヨト

Idea: decompose subject-object relationship using roles: Permission Assignment (PA)

User Assignment (UA)	
Role	
PCMember	
Faculty	
Faculty	
TA	
Student	
UEmployee	
Student	
UMember	

Lleor Accignment (LIA)

Role	Permission
PCMember	GrantTenure
PCMember	AssignGrades
PCMember	ReceiveHBenefits
PCMember	UseGym
Faculty	AssignGrades
Faculty	ReceiveHBenefits
Faculty	UseGym
TA	AssignHWScores
TA	Register4Courses
TA	UseGym
UEmployee	ReceiveHBenefits
UEmployee	UseGym
Student	Register4Courses
Student	UseGym
UMember	UseGym

< ロ > < 同 > < 回 > < 回 >

Idea: decompose subject-object relationship using roles: Permission Assignment (PA)

User Assignment (UA)	
User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Greg	UMember

Lleor Accignment (LIA)

Role	Permission
PCMember	GrantTenure
PCMember	AssignGrades
PCMember	ReceiveHBenefits
PCMember	UseGym
Faculty	AssignGrades
Faculty	ReceiveHBenefits
Faculty	UseGym
TA	AssignHWScores
TA	Register4Courses
TA	UseGym
UEmployee	ReceiveHBenefits
UEmployee	UseGym
Student	Register4Courses
Student	UseGym
UMember	UseGym

< ロ > < 同 > < 回 > < 回 >

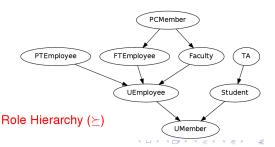
Idea: decompose subject-object relationship using roles: Permission Assignment (PA)

User Assignment (UA)	
Role	
PCMember	
Faculty	
Faculty	
TA	
Student	
UEmployee	
Student	
UMember	

Lleor Accignment (LIA)

Role	Permission
PCMember	GrantTenure
PCMember	AssignGrades
PCMember	ReceiveHBenefits
PCMember	UseGym
Faculty	AssignGrades
Faculty	ReceiveHBenefits
Faculty	UseGym
TA	AssignHWScores
TA	Register4Courses
TA	UseGym
UEmployee	ReceiveHBenefits
UEmployee	UseGym
Student	Register4Courses
Student	UseGym
UMember	UseGym

イロト イ押ト イヨト イヨト


The use of role hierarchies leads to a compact RBAC policies

Permission Assignment (PA)

User Assignment (UA)

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Greg	UMember

Role	Permission
PCMember	GrantTenure
Faculty	AssignGrades
TA	AssignHWScores
UEmployee	ReceiveHBenefits
Student	Register4Courses
UMember	UseGym

- (A)RBAC model simplifies specification and administration of access control policies
- Idea: specify how RBAC policies are changed by administrative actions
- Our focus: ARBAC97
 - Administrative actions can only modify User Assignment

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Faculty : $\langle +\{ Student \}, -\{ TA \} \rangle \Longrightarrow \oplus PTEmpl.$

PCMember : $\langle + \{ PTEmpl. \}, \emptyset \rangle \Longrightarrow \oplus Faculty$

- Role Revocation:
 Faculty : ⟨+{Student},∅⟩ ⇒ ⊖Student
- Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Greg	UMember

 Role Assignment: Faculty : ⟨+{Student}, -{TA}⟩ ⇒ ⊕PTEmpl.

PCMember : $\langle +\{PTEmpl.\}, \emptyset \rangle \Longrightarrow \oplus Faculty$

Role Revocation:
 Faculty : ⟨+{Student},∅⟩ ⇒ ⊖Student

• Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Greg	UMember

 Role Assignment: Faculty : ⟨+{Student}, -{TA}⟩ ⇒ ⊕PTEmpl.

PCMember : $\langle +\{PTEmpl.\}, \emptyset \rangle \Longrightarrow \oplus Faculty$

Role Revocation:
 Faculty : ⟨+{Student}, ∅⟩ ⇒ ⊖Student

• Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember

 Role Assignment: Faculty : ⟨+{Student}, -{TA}⟩ ⇒ ⊕PTEmpl

 $\textit{PCMember} : \langle +\{\textit{PTEmpl.}\}, \emptyset \rangle \Longrightarrow \oplus \textit{Faculty}$

Role Revocation:
 Faculty : ⟨+{Student},∅⟩ ⇒ ⊖Student

• Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember

・ロト ・ 四ト ・ ヨト ・ ヨト

 Role Assignment: Faculty : ⟨+{Student}, -{TA}⟩ ⇒ ⊕PTEmpl

 $\textit{PCMember} : \langle +\{\textit{PTEmpl.}\}, \emptyset \rangle \Longrightarrow \oplus \textit{Faculty}$

Role Revocation:
 Faculty : ⟨+{Student},∅⟩ ⇒ ⊖Student

• Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember
Fred	Faculty

< ロ > < 同 > < 回 > < 回 >

Role Assignment:
 Faculty : (+{Student}, -{TA}) ⇒ ⊕PTEmpl.

 $\mathsf{PCMember} : \langle +\{\mathsf{PTEmpl.}\}, \emptyset \rangle \Longrightarrow \oplus \mathsf{Faculty}$

• Role Revocation: Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \ominus Student$

• Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember
Fred	Faculty

< D > < P > < E > < E</p>

Role Assignment:
 Faculty : (+{Student}, -{TA}) ⇒ ⊕PTEmpl.

 $\mathsf{PCMember} : \langle +\{\mathsf{PTEmpl.}\}, \emptyset \rangle \Longrightarrow \oplus \mathsf{Faculty}$

• Role Revocation: Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \ominus Student$

• Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember
Fred	Faculty

Role Assignment:
 Faculty : (+{Student}, -{TA}) ⇒ ⊕PTEmpl.

PCMember : $\langle +\{PTEmpl.\}, \emptyset \rangle \Longrightarrow \oplus Faculty$

Role Revocation:
 Faculty : ⟨+{Student}, ∅⟩ ⇒ ⊖Student

• Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember
Fred	Faculty

Faculty : $\langle + \{ Student \}, - \{ TA \} \rangle \Longrightarrow \oplus PTEmpl.$

PCMember : $\langle +\{PTEmpl.\}, \emptyset \rangle \Longrightarrow \oplus Faculty$

- Role Revocation:
 Faculty : ⟨+{Student},∅⟩ ⇒ ⊖Student
- Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

 $Faculty : \langle + \{Student\}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember
Fred	Faculty

Faculty : $\langle + \{ Student \}, - \{ TA \} \rangle \Longrightarrow \oplus PTEmpl.$

PCMember : $\langle +\{PTEmpl.\}, \emptyset \rangle \Longrightarrow \oplus Faculty$

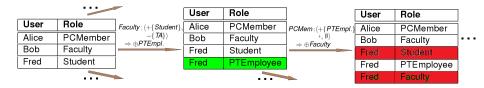
- Role Revocation:
 Faculty : ⟨+{Student},∅⟩ ⇒ ⊖Student
- Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

Assign Fred to TA? No

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember
Fred	Faculty

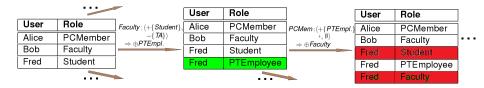
Faculty : $\langle + \{ Student \}, - \{ TA \} \rangle \Longrightarrow \oplus PTEmpl.$

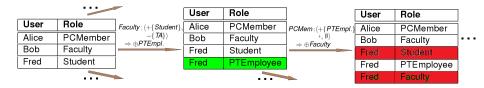

PCMember : $\langle +\{PTEmpl.\}, \emptyset \rangle \Longrightarrow \oplus Faculty$

- Role Revocation:
 Faculty : ⟨+{Student},∅⟩ ⇒ ⊖Student
- Mutually Exclusive Roles (MER): MER(TA, PTEmployee)

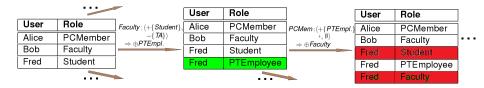
Faculty : $\langle + \{ Student \}, \emptyset \rangle \Longrightarrow \oplus TA$

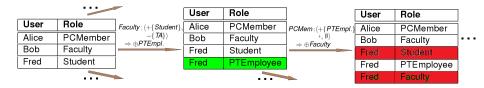
Assign Fred to TA? No


User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember
Fred	Faculty


• **Problem:** Starting from an initial RBAC policy and using the administrative actions in the ARBAC policy, is there a way to assign roles Student and Faculty to Fred? Yes: conflict

 \Rightarrow Need for conflict analysis


- In large systems (e.g., Dresdner bank: 40,000 users and 1,300 roles), analysis of access control policies can be very difficult.
- To predict the effects of changes on policies of real-world complexity by manual inspection is unfeasible.
 - Automated support needed!


- Problem: Starting from an initial RBAC policy and using the administrative actions in the ARBAC policy, is there a way to assign roles Student and Faculty to Fred? Yes: conflict
 Need for conflict analysis
- In large systems (e.g., Dresdner bank: 40,000 users and 1,300 roles), analysis of access control policies can be very difficult.
- To predict the effects of changes on policies of real-world complexity by manual inspection is unfeasible.
 - Automated support needed!

- Problem: Starting from an initial RBAC policy and using the administrative actions in the ARBAC policy, is there a way to assign roles Student and Faculty to Fred? Yes: conflict
 Need for conflict analysis
- In large systems (e.g., Dresdner bank: 40,000 users and 1,300 roles), analysis of access control policies can be very difficult.
- To predict the effects of changes on policies of real-world complexity by manual inspection is unfeasible.
 - Automated support needed!

- Problem: Starting from an initial RBAC policy and using the administrative actions in the ARBAC policy, is there a way to assign roles Student and Faculty to Fred? Yes: conflict
 Need for conflict analysis
- In large systems (e.g., Dresdner bank: 40,000 users and 1,300 roles), analysis of access control policies can be very difficult.
- To predict the effects of changes on policies of real-world complexity by manual inspection is unfeasible.
 - Automated support needed!

- Problem: Starting from an initial RBAC policy and using the administrative actions in the ARBAC policy, is there a way to assign roles Student and Faculty to Fred? Yes: conflict
 Need for conflict analysis
- In large systems (e.g., Dresdner bank: 40,000 users and 1,300 roles), analysis of access control policies can be very difficult.
- To predict the effects of changes on policies of real-world complexity by manual inspection is unfeasible.
 - ⇒ Automated support needed!

< ロ > < 同 > < 回 > < 回 >

ASASP: Automated Symbolic Analysis of Security Policies Tool

イロト イヨト イヨト イヨト

Given

- initial RBAC policy $\langle U, R, UA_0 \rangle$
- a set administrative actions $\psi = \langle role_assignment, role_revocation \rangle$
- Establish if a user $u \in U$ can be assigned to a role $r \in R$ by applying a sequence of administrative actions in ψ

• • • • • • • • • • • •

Given

- initial RBAC policy $\langle U, R, UA_0 \rangle$
- a set administrative actions $\psi = \langle role_assignment, role_revocation \rangle$
- Establish if a user $u \in U$ can be assigned to a role $r \in R$ by applying a sequence of administrative actions in ψ

Other Security analysis problems (e.g., Role containment, Weakest precondition...) can be reduced to User-role reachability problem

 \implies User-role reachability problem is core problem in security analysis.

Features	RBAC-PAT	Монаwк	Рмѕ	VAC	ASASP
MER constraints	X	X	X	X	
Unknown number of Users	X	X	X	\checkmark	
Non-Separate Administration	X	X			
<i>C</i> _a > 1	X	X	X	X	

æ

イロト イヨト イヨト イヨト

Our Approach: Using a Decidable Fragment of (Many-sorted) First-order Logic

- Sorts: User, Role
- Predicate symbols: *ua* : *User* × *Role*
- Defining UA_0 : $\forall u, r.(ua(u, r) \Leftrightarrow \begin{pmatrix} (u = u_1 \land r = Role 1) \lor \\ (u = u_2 \land r = Role 2) \lor \\ (u = u_3 \land r = Role 3) \lor \\ \vdots \end{pmatrix})$
 - MER Constraints: No user can be *TA* and *PTEmployee* at the same time:

 $\forall u. \neg (ua(u, TA) \land ua(u, PTEmployee))$

• Goal : There exists a user who is member of a certain role:

$$\exists u, r.(ua(u, r) \land r = Student)$$

Our Approach: Using a Decidable Fragment of (Many-sorted) First-order Logic

• $UEmpl. : \langle + \{Student\}, - \{TA\} \rangle \Longrightarrow \oplus PTEmpl.$

$$\exists u_a, r_a.(ua(u_a, r_a) \land r_a = UEmployee) \land \exists u. \begin{pmatrix} ua(u, Student) \land \forall r_2.(r_2 = TA \Rightarrow \neg ua(u, r_2)) \land \\ \forall x, y.(ua'(x, y) \Leftrightarrow ((x = u \land y = PTEmployee) \lor ua(x, y))) \end{pmatrix}$$

• $UEmpl. : \langle \{Student\}, \emptyset \rangle \Longrightarrow \ominus Student$

$$\begin{array}{l} \exists u_{a}, r_{a}.(ua(u_{a}, r_{a}) \land r_{a} = UEmployee) \land \\ \exists u. \left(\begin{array}{l} \exists r_{1}.(ua(u, r_{1}) \land r_{1} = Student) \land \\ \forall x, y.(ua'(x, y) \Leftrightarrow (\neg (x = u \land y = Student) \land ua(x, y))) \end{array} \right) \end{array}$$

イロト イ理ト イヨト イヨト

Given symbolic representation of

- T_{RBAC} = theory specifying RBAC policies
- *I*(*ua*) = initial RBAC policy
- G(ua) = a goal (e.g., user u is a member of role r)
- $\tau(ua, ua') = administrative actions in \psi$

< 🗇 🕨 < 🖃 🕨

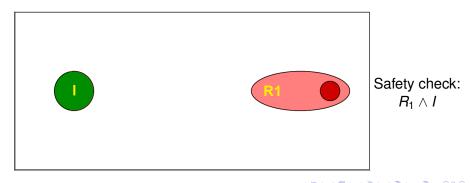
Given symbolic representation of

- *T_{RBAC}* = theory specifying RBAC policies
- *I*(*ua*) = initial RBAC policy
- G(ua) = a goal (e.g., user u is a member of role r)
- $\tau(ua, ua') = administrative actions in \psi$

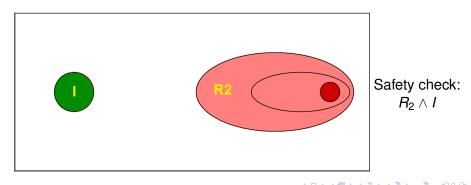
Run a symbolic backward reachability procedure

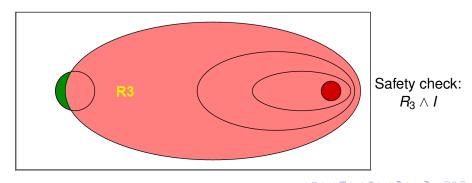
- $R_0(ua) := G(ua)$
- $R_{i+1}(ua) := \exists ua'.(R_i(ua') \land \tau(ua, ua'))$ (pre-image) for $i \ge 0$

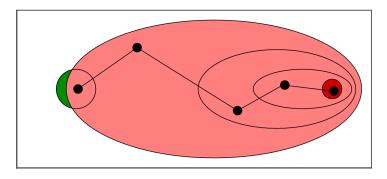
・ 同 ト ・ ヨ ト ・ ヨ ト

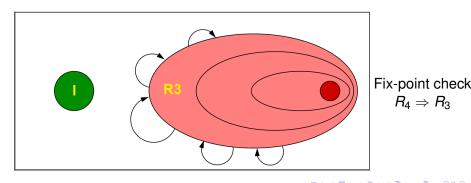

Our Approach

Run a symbolic backward reachability procedure


- $R_0(ua) := G(ua)$
- $R_{i+1}(ua) := \exists ua'.(R_i(ua') \land \tau(ua, ua'))$ (pre-image) for $i \ge 0$
- Initial States
 Goal States
 Backward Reachable States


- $R_0(ua) := G(ua)$
- $R_{i+1}(ua) := \exists ua'.(R_i(ua') \land \tau(ua, ua'))$ (pre-image) for $i \ge 0$
- Initial States
 Goal States
 Backward Reachable States


- $R_0(ua) := G(ua)$
- $R_{i+1}(ua) := \exists ua'.(R_i(ua') \land \tau(ua, ua'))$ (pre-image) for $i \ge 0$
- Initial States
 Goal States
 Backward Reachable States


- $R_0(ua) := G(ua)$
- $R_{i+1}(ua) := \exists ua'.(R_i(ua') \land \tau(ua, ua'))$ (pre-image) for $i \ge 0$
- Initial States
 Goal States
 Backward Reachable States

- $R_0(ua) := G(ua)$
- $R_{i+1}(ua) := \exists ua'.(R_i(ua') \land \tau(ua, ua'))$ (pre-image) for $i \ge 0$
- Initial States
 Goal States
 Backward Reachable States

- $R_0(ua) := G(ua)$
- $R_{i+1}(ua) := \exists ua'.(R_i(ua') \land \tau(ua, ua'))$ (pre-image) for $i \ge 0$
- Initial States
 Goal States
 Backward Reachable States

- An automated analysis tool for Administrative RBAC policies
- Scalability: Heuristics
 - Useful actions
 - Increasingly precise approximations of large policies
 - Reuse of previous computation states
- Initial results: ASASP outperforms MOHAWK and RBAC-PAT on their benchmarks
- Very recently, new tools VAC and PMS with their benchmarks are introduced
 - ASASP seems to have bad behaviors with these benchmarks

 \Rightarrow need further heuristics

- An automated analysis tool for Administrative RBAC policies
- Scalability: Heuristics
 - Useful actions
 - Increasingly precise approximations of large policies
 - Reuse of previous computation states
- Initial results: ASASP outperforms MOHAWK and RBAC-PAT on their benchmarks
- Very recently, new tools VAC and PMS with their benchmarks are introduced
 - ASASP seems to have bad behaviors with these benchmarks

 \Rightarrow need further heuristics

- An automated analysis tool for Administrative RBAC policies
- Scalability: Heuristics
 - Useful actions
 - Increasingly precise approximations of large policies
 - Reuse of previous computation states
- Initial results: ASASP outperforms MOHAWK and RBAC-PAT on their benchmarks
- Very recently, new tools VAC and PMS with their benchmarks are introduced
 - ASASP seems to have bad behaviors with these benchmarks

 \Rightarrow need further heuristics

- An automated analysis tool for Administrative RBAC policies
- Scalability: Heuristics
 - Useful actions
 - Increasingly precise approximations of large policies
 - Reuse of previous computation states
- Initial results: ASASP outperforms MOHAWK and RBAC-PAT on their benchmarks
- Very recently, new tools VAC and PMS with their benchmarks are introduced
 - ASASP seems to have bad behaviors with these benchmarks
 - \Rightarrow need further heuristics

ASASP with new Heuristics

- Forward Useful Actions
- Ordering the Actions

크

イロト イ団ト イヨト イヨト

• Let ψ be administrative actions and R_g a set of roles:

- An action $\tau \in \psi$ is 0-*useful* iff its target role is in R_g
- *τ* is *k*-useful (for *k* > 0) iff it is:
 - (k − 1)-useful or,
 - its target role occurs (possibly negated) in the simple pre-condition of
 - a (k 1)-useful action

• Given ψ :

•
$$r_a$$
: $\langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_2$
• r_a : $\langle +\{r_2\}, \emptyset \rangle \Longrightarrow \oplus r_3$
• r_a : $\langle +\{r_2\}, -\{r_4\} \rangle \Longrightarrow \oplus r_5$
• r_a : $\langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_1$
• r_a : $\langle +\{r_2\}, \emptyset \rangle \Longrightarrow \oplus r_2$
• Goal: r_5

$$\psi^{\leq 0} := \{ \mathbf{r}_{\mathbf{a}} : \langle +\{\mathbf{r}_2\}, -\{\mathbf{r}_4\} \rangle \Longrightarrow \oplus \mathbf{r}_5 \}$$

- $2 \psi^{\leq 1} := \psi^{\leq 0} \cup \{ r_a : \langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_2 \}$
- (1) Stop since fix-point reached: $\psi^{\leq k} = \psi^{\leq 2}$ for k > 2

• Given ψ :

•
$$r_a$$
: $\langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_2$
• r_a : $\langle +\{r_2\}, \emptyset \rangle \Longrightarrow \oplus r_3$
• r_a : $\langle +\{r_2\}, -\{r_4\} \rangle \Longrightarrow \oplus r_5$
• r_a : $\langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_1$
• r_a : $\langle +\{r_2\}, \emptyset \rangle \Longrightarrow \oplus r_2$
• Goal: r_5

$$\psi^{\leq 0} := \{ r_a : \langle +\{r_2\}, -\{r_4\} \rangle \Longrightarrow \oplus r_5 \}$$

$$\psi^{\leq 1} := \psi^{\leq 0} \cup \{ r_a : \langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_2 \}$$

Stop since fix-point reached: $\psi^{\leq k} = \psi^{\leq 2}$ for k > 2

イロト イヨト イヨト イヨト

• Given ψ :

•
$$r_a$$
: $\langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_2$
• r_a : $\langle +\{r_2\}, \emptyset \rangle \Longrightarrow \oplus r_3$
• r_a : $\langle +\{r_2\}, -\{r_4\} \rangle \Longrightarrow \oplus r_5$
• r_a : $\langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_1$
• r_a : $\langle +\{r_2\}, \emptyset \rangle \Longrightarrow \oplus r_2$
• Goal: r_5

$$\psi^{\leq 0} := \{ \mathbf{r}_{\mathbf{a}} : \langle +\{\mathbf{r}_{2}\}, -\{\mathbf{r}_{4}\} \rangle \Longrightarrow \oplus \mathbf{r}_{5} \}$$

$$\psi^{\leq 1} := \psi^{\leq 0} \cup \{ \mathbf{r}_{\mathbf{a}} : \langle +\{\mathbf{r}_{1}\}, \emptyset \rangle \Longrightarrow \oplus \mathbf{r}_{2} \}$$

$$\psi^{\leq 2} := \psi^{\leq 1} \cup \{ \mathbf{r}_{\mathbf{a}} : \langle +\{\mathbf{r}_{1}\}, \emptyset \rangle \Longrightarrow \oplus \mathbf{r}_{1} \}$$

(a) Stop since fix-point reached:
$$\psi^{\leq k} = \psi^{\leq 2}$$
 for $k > 0$

æ

<ロ> <問> <問> < 回> < 回> 、

• Given ψ :

•
$$r_a$$
: $\langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_2$
• r_a : $\langle +\{r_2\}, \emptyset \rangle \Longrightarrow \oplus r_3$
• r_a : $\langle +\{r_2\}, -\{r_4\} \rangle \Longrightarrow \oplus r_5$
• r_a : $\langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_1$
• r_a : $\langle +\{r_2\}, \emptyset \rangle \Longrightarrow \oplus r_2$
• Goal: r_5

$$\psi^{\leq 0} := \{ r_a : \langle +\{r_2\}, -\{r_4\} \rangle \Longrightarrow \oplus r_5 \}$$

$$\psi^{\leq 1} := \psi^{\leq 0} \cup \{ r_a : \langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_2 \}$$

$$\psi^{\leq 2} := \psi^{\leq 1} \sqcup \{ r_a : \langle +\{r_1\}, \emptyset \rangle \Longrightarrow \oplus r_2 \}$$

Stop since fix-point reached:
$$\psi^{\leq k} = \psi^{\leq 2}$$
 for $k > 2$

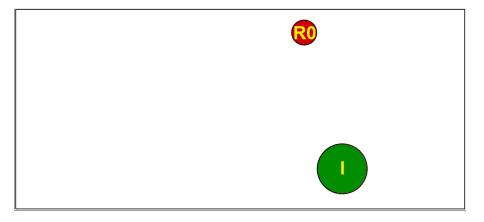
æ

イロト イヨト イヨト イヨト

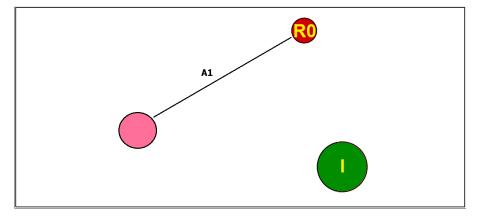
backward vs. forward useful actions

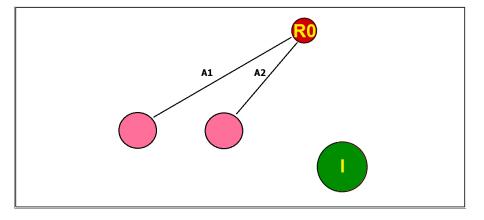
- Let ψ be administrative actions and R_i a set of roles presenting in UA₀:
 - $\tau \in \psi$ is forward 0-*useful* iff its pre-condition is a subset of R_i
 - τ is forward *k*-useful (for k > 0) iff it is:
 - (*k* − 1)-useful or,
 - its pre-condition is a subset of $R_i = R_i \cup \{r | r \text{ is the target role of a } (k-1)$ -useful action}

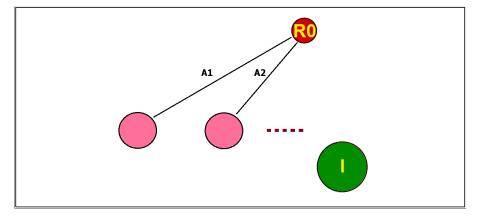
- backward vs. forward useful actions
- Let ψ be administrative actions and R_i a set of roles presenting in UA₀:
 - $\tau \in \psi$ is forward 0-*useful* iff its pre-condition is a subset of R_i
 - τ is forward *k*-useful (for k > 0) iff it is:
 - (*k* − 1)-useful or,
 - its pre-condition is a subset of $R_i = R_i \cup \{r | r \text{ is the target role of a } (k 1)$ -useful action

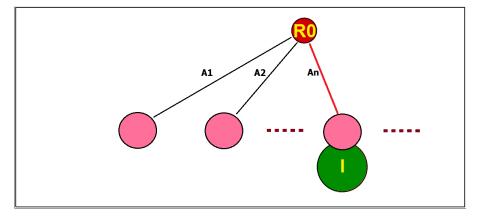

(k-1)-useful action}

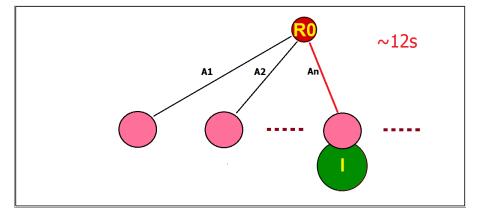
イロト イポト イヨト イヨト

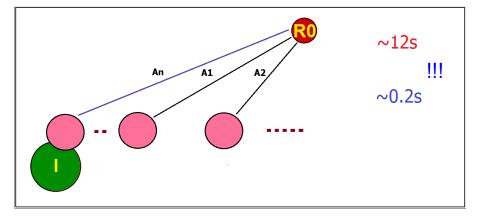

- backward vs. forward useful actions
- Let ψ be administrative actions and R_i a set of roles presenting in UA₀:
 - $\tau \in \psi$ is forward 0-*useful* iff its pre-condition is a subset of R_i
 - τ is forward *k*-useful (for k > 0) iff it is:
 - (k − 1)-useful or,
 - its pre-condition is a subset of $R_i = R_i \cup \{r | r \text{ is the target role of a}$
 - (k-1)-useful action}


- Compute ψ_B by using backward useful actions
- Compute ψ_F by using forward useful actions
- Solve the user-role reachability with the set $\psi'=\psi_B\cap\psi_F$ of actions


▲ 同 ▶ → 三 ▶

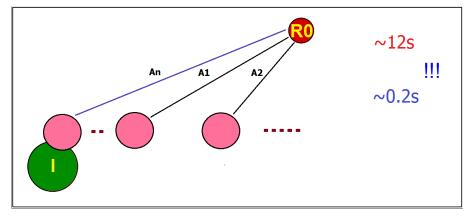



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <



Anh Truong (FBK & UNITN)

Automated Analysis of Security Policies


2

イロト イヨト イヨト イヨト

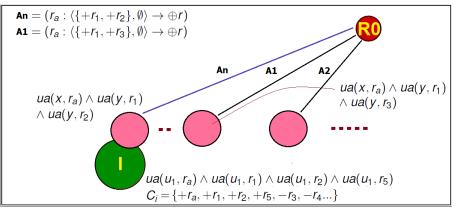
æ

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

\Rightarrow Ordering Actions in ψ

• • • • • • • • • • • •

• Consider the "difference" between two sets of states


Define

$Diff(G_1, G_2) = (P_1 \setminus P_2) \cup (N_1 \setminus N_2)$

where $C_1 = P_1 | N_1, C_2 = P_2 | N_2$ are pre-conditions, $P_1, P_2 (N_1, N_2)$ are sets of roles of the form +r (-r, r)

• Example: let $C_1 = \{+r_1, +r_2 | -r_4\}$ and $C_2 = \{+r_1, +r_3 | -r_4, -r_2\}$ • $Diff(C_1, C_2) = \{+r_2\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the "difference" between two sets of statesDefine

$$Diff(C_1, C_2) = (P_1 \setminus P_2) \cup (N_1 \setminus N_2)$$

where

Anh Truong (FBK & UNITN)

Automated Analysis of Security Policies

Consider the "difference" between two sets of states

Define

$$\textit{Diff}(C_1, C_2) = (P_1 \setminus P_2) \cup (N_1 \setminus N_2)$$

where

 $C_1 = P_1 | N_1, C_2 = P_2 | N_2$ are pre-conditions,

 P_1 , P_2 (N_1 , N_2) are sets of roles of the form +r (-r, resp.)

• Example: let $C_1 = \{+r_1, +r_2| - r_4\}$ and $C_2 = \{+r_1, +r_3| - r_4, -r_2\}$ • $Diff(C_1, C_2) = \{+r_2\}$

- Consider the "difference" between two sets of states
- Define

$$\textit{Diff}(C_1, C_2) = (P_1 \setminus P_2) \cup (N_1 \setminus N_2)$$

where $C_1 = P_1 | N_1, C_2 = P_2 | N_2$ are pre-conditions, $P_1, P_2 (N_1, N_2)$ are sets of roles of the form +r (-r, resp.)

• Example: let $C_1 = \{+r_1, +r_2| - r_4\}$ and $C_2 = \{+r_1, +r_3| - r_4, -r_2\}$ • $Diff(C_1, C_2) = \{+r_2\}$

 Let ψ be the set of actions and C_i represent the "pre-condition" of initial states UA₀ (i.e., all roles in UA₀ are in C_i)

) For each
$$\tau = (C_a : C \to \otimes r) \in \psi$$
:

2 If $true \in C_a$ and $true \in C$:

3 set au be the highest order in ψ'

Ise:

5 Calculate $Diff(C_a \cup C, C_i)$ for τ

- Order the actions by cardinality of their Diff (from lower value to higher one)
 - If $|Diff_{\tau_1}| = |Diff_{\tau_2}|$ where $\tau_1 = (C_{a1} : C_1 \to \otimes r_1)$ and $\tau_2 = (C_{a2} : C_2 \to \otimes r_2)$:

(3) τ_1 has higher order if $|C_{a1} \cup C_1| < |C_{a2} \cup C_2|$ and vice versa

 Let ψ be the set of actions and C_i represent the "pre-condition" of initial states UA₀ (i.e., all roles in UA₀ are in C_i)

) For each
$$au = (C_a : C o \otimes r) \in \psi$$

2 If $true \in C_a$ and $true \in C$:

3 set τ be the highest order in ψ'

Ise:

Solution Calculate $Diff(C_a \cup C, C_i)$ for τ

- Order the actions by cardinality of their Diff (from lower value to higher one)
 - If $|Diff_{\tau_1}| = |Diff_{\tau_2}|$ where $\tau_1 = (C_{a1} : C_1 \to \otimes r_1)$ and $\tau_2 = (C_{a2} : C_2 \to \otimes r_2)$:

3 τ_1 has higher order if $|C_{a1} \cup C_1| < |C_{a2} \cup C_2|$ and vice versa

• Experiments:

- Data sets: 4 packages from MOHAWK, VAC, PMS
- randomly generated test cases inspired by real case studies widely adopted by the community such as: a Hospital, a University, and an European Bank
- MOHAWK performs better than RBAC-PAT (RBAC-PAT does not scale up to handle these benchmarks)

• Experiments:

- Data sets: 4 packages from MOHAWK, VAC, PMS
- randomly generated test cases inspired by real case studies widely adopted by the community such as: a Hospital, a University, and an European Bank
- MOHAWK performs better than RBAC-PAT (RBAC-PAT does not scale up to handle these benchmarks)

MOHAWK's Testcases: Separate Administration Assumption I

Test	$\# \text{ Roles } \diamond$	Монаwк			Рмs		ASASP	
suite		MOHAWK	VAC		Fwd	Prll		
suite	# Rules	Time	Time	# Rules	Time	Time	Time	# Rules
	$3 \diamond 15$	0.42	0.19	1	0.35	0.41	0.09	2
	$5 \diamond 25$	0.50	0.32	1	0.36	0.44	0.11	2
	$20 \diamond 100$	0.60	0.31	1	0.30	0.35	0.10	2
	$40 \diamond 200$	0.94	0.66	1	0.48	0.53	0.32	2
	$200 \diamond 1000$	2.65	0.91	1	0.44	0.52	0.28	2
Test	$500 \diamond 2500$	4.87	1.57	1	0.92	1.06	0.73	2
suite 1	$4000 \diamond 20000$	16.90	1.89	1	33.51	22.33	1.24	2
	$20000 \diamond 80000$	51.56	2.52	1	TO	TO	1.17	2
	$30000 \diamond 120000$	65.54	4.32	1	TO	TO	1.68	2
	$40000\diamond200000$	131.14	9.84	1	TO	TO	2.25	2

크

MOHAWK's Testcases: Separate Administration Assumption II

Test	$\# \text{ Roles } \diamond$	Монаwк	VAC		Рмз		ASASP	
suite		MOHAWK		VAC	Fwd	Prll		SASP
suite	# Rules	Time	Time	$\# \ {\rm Rules}$	Time	Time	Time	# Rules
	$3 \diamond 15$	0.40	0.21	1	0.31	0.33	0.12	2
	$5 \diamond 25$	0.50	0.29	1	0.35	0.38	0.21	2
	$20 \diamond 100$	0.54	0.14	1	0.34	0.41	0.10	2
	$40 \diamond 200$	1.21	0.51	1	0.57	0.54	0.16	2
	$200 \diamond 1000$	2.54	0.73	1	0.49	0.61	0.14	2
Test	$500 \diamond 2500$	5.02	1.02	1	1.14	0.73	0.43	2
suite 2	$4000 \diamond 20000$	12.31	1.33	1	26.16	19.38	1.08	2
	$20000 \diamond 80000$	24.42	4.75	1	TO	TO	1.01	2
	$30000 \diamond 120000$	94.85	6.77	1	TO	TO	1.09	2
	$40000\diamond200000$	140.89	9.89	1	TO	TO	1.49	2

MOHAWK's Testcases: Separate Administration Assumption III

Test	$\# \text{ Roles } \diamond$	Монаwк			Pms		ASASP	
suite		MOHAWK	VAC		Fwd	Prll		
suite	# Rules	Time	Time	# Rules	Time	Time	Time	# Rules
	$3 \diamond 15$	0.41	0.12	1	0.32	0.39	0.09	2
	$5 \diamond 25$	0.49	0.17	1	0.50	0.43	0.08	2
	$20 \diamond 100$	0.77	0.21	1	0.36	0.42	0.14	2
	$40 \diamond 200$	0.87	0.57	1	0.38	0.47	0.17	2
	$200 \diamond 1000$	5.93	1.93	1	0.82	0.98	0.51	2
Test	500, 2500	3.78	0.93	1	0.64	0.86	0.12	2
suite 3	$4000 \diamond 20000$	14.05	4.01	1	18.43	13.29	1.12	2
	$20000 \diamond 80000$	30.29	3.56	1	TO	TO	2.65	2
	$30000 \diamond 120000$	109.16	9.13	1	TO	TO	1.89	2
	$40000\diamond200000$	154.12	9.92	1	TO	TO	2.15	2

VAC's Testcases: Separate Administration Assumption

Test	$\# \text{ Roles } \diamond$	Монаwк	,	VAC	Pms		ASASP	
case		MORAWK		VAC		Prll		
case	# Rules	Time	Time # Rules		Time	Time	Time	# Rules
Bank1	$531 \diamond 5126$	Err	0.36	0	TO	TO	42.67	576
Bank2	$531 \diamond 5126$	Err	0.48	0	TO	TO	48.81	584
Bank3	$531 \diamond 5126$	Err	0.76	2	TO	Err	38.63	497
Bank4	$531 \diamond 5126$	Err	1.97	5	TO	TO	5.71	566

크

イロト イ団ト イヨト イヨト

VAC's Testcases: Non-Separate Administration Assumption

	# Roles \diamond		VAC	1	Pms	ASASP	
Test case	# Roles \diamond # Rules		VAC	Fwd	Prll		
		Time	# Rules	Time	Time	Time	# Rules
Hospital1	$13 \diamond 37$	0.06	5	0.71	Err	1.02	15
Hospital2	$13 \diamond 37$	0.09	5	0.87	3m15.71	1.14	13
Hospital3	$13 \diamond 37$	0.29	2	0.85	0.49	0.42	4
Hospital4	$13 \diamond 37$	0.47	4	0.62	0.26	2.47	12
University1	$32 \diamond 449$	0.09	7	0.89	Err	1.91	17
University2	$32 \diamond 449$	0.68	8	0.67	0.56	0.48	2
University3	$32 \diamond 449$	0.06	5	TO	Err	8.15	40
University4	$32 \diamond 449$	1.85	12	0.62	TO	2.19	18

크

PMS's Testcases: Non-Separate Administration Assumption

	# Roles ◊ # Rules	374	C]	Рмs	ASASP	
Test case		VA	C	Fwd	Prll		
		Time	# Rules	Time	Time	Time	# Rules
Test 1	$40 \diamond 487$	16.06	3	0.63	0.48	1.31	2
Test 2	$40 \diamond 450$	0.19	0	0.67	0.45	0.18	0
Test 3	$40 \diamond 462$	8.12	3	0.52	0.53	0.41	2
Test 4	$40 \diamond 446$	7.81	3	0.55	42.38	0.39	2
Test 5	$40 \diamond 480$	45.37	47	0.95	0.51	2.31	9
Test 6	$40 \diamond 479$	25.63	13	0.75	0.46	1.79	4
Test 7	$40 \diamond 467$	1m3.26	101	3.72	2.16	1.68	2
Test 8	$40 \diamond 484$	1m10.64	65	4.18	2m11.86	2.34	8
Test 9	$40 \diamond 463$	1m26.08	89	4.92	6m18.84	2.79	11
Test 10	$40 \diamond 481$	27.14	38	0.35	0.53	2.65	5

크

- Security analysis of Access Control Policies
- ASASP: solve the user-role reachability problems for ARBAC policies.
- New heuristics for ASASP
 - Backward Useful Actions
 - Ordering Actions
- Ourrent works:
 - Solve user-role reachability problems for Administrative Temporal RBAC policies
 - An incremental version of the approach
 - Proposed pre-processing role hierarchies strategies

Thank you for your attention!

Anh Truong (FBK & UNITN)

Automated Analysis of Security Policies