
ALPS: An Action Language for Policy
Specification and Automated Safety Analysis

Silvio Ranise Riccardo Traverso

Security & Trust Unit
Fondazione Bruno Kessler

Trento, Italy

Trento, October 21th, 2014

Silvio Ranise, Riccardo Traverso S&T retreat 1/28

Many Models for Access Control

Several models, languages, and enforcement mechanisms have
been proposed for different scenarios.

Discretionary
Mandatory
Role-Based
Attribute-Based

We can choose the most suited model or even combine
multiple ones, depending on the type of authorization
conditions needed.

There are many types of access conditions we might want to
express.

Silvio Ranise, Riccardo Traverso S&T retreat 2/28

The Problem

Too expressive models have to be restricted in order to make
safety decidable, making it more difficult to use them for
realistic scenarios.

Each model has its own characteristics and algorithms for
solving safety.

Sometimes it is possible to translate a policy into a different
model, but the very heterogeneous landscape of models makes
it a difficult task.

Silvio Ranise, Riccardo Traverso S&T retreat 3/28

Action Language for Policy Specification (ALPS)

It preserves decidability of safety verification.

It can express many models and policies with contextual
constraints.

Intermediate language:

focus on re-using existing, well-engineered verification
techniques by means of translations from/to other models;
still, there is the possibility to develop new specific decidability
results for safety.

Silvio Ranise, Riccardo Traverso S&T retreat 4/28

ALPS: Intermediate Language

Smart Spaces XACML

ALPS PolicyWorkflows Model Checking

ARBAC Groove

Silvio Ranise, Riccardo Traverso S&T retreat 5/28

ALPS: Features

Inspired by the STRIPS action language.

Pre-conditions: positive/negative guards.

Post-conditions: add list, delete list.

Priorities (normal vs mandatory).

. . .

Silvio Ranise, Riccardo Traverso S&T retreat 6/28

ALPS: Features (cont’d)

. . .

Type predicates with subtyping.

Immutable predicates.

Notion of time (modulo some T).

Silvio Ranise, Riccardo Traverso S&T retreat 7/28

Example: Smart Spaces

Smart Spaces XACML

ALPS PolicyWorkflows Model Checking

ARBAC Groove

Silvio Ranise, Riccardo Traverso S&T retreat 8/28

Doctor Cabinet Example

We model the policy for a cabinet of a group of doctors.

A person is either a doctor or a patient.

Several waiting rooms, freely accessible, connected to offices.

Each office is owned by a doctor.

Doctors arrive between 7am and 9am.

Patients enter offices one at a time, between 8am and 7pm.

Doctors leave anytime, if they are not busy with a patient.

Silvio Ranise, Riccardo Traverso S&T retreat 9/28

Declarations

maxtime 24 ;

type Space , O f f i c e (Space) , WaitingRoom (Space) ;
type Person , Doctor (Person) , Pa t i e n t (Person) ;

immutable p red i ca te Owner (Doctor , O f f i c e) ;
immutable p red i ca te Door (Space , Space) ;

pred i ca te Busy (Doctor) , I n (Person , Space) ;

Silvio Ranise, Riccardo Traverso S&T retreat 10/28

docArrives and docLeaves

mandatory act ion do cA r r i v e s (Doctor d , WaitingRoom w,
O f f i c e o)

{
7 <= time and time <= 9 ,
Owner (d , o) , Door (w, o) ,
−I n (d , w) , +In (d , o)

}

act ion docLeaves (Doctor d , O f f i c e o , WaitingRoom w)
{

not Busy (d) , Door (o , w) ,
−I n (d , o) , +In (d , w)

}

Silvio Ranise, Riccardo Traverso S&T retreat 11/28

patEnters and patLeaves

act ion pa tEn t e r s (Pa t i e n t p , Doctor d , O f f i c e o ,
WaitingRoom w)

{
8 <= time and time < 19 ,
I n (d , o) , not Busy (d) , Door (w, o) ,
−I n (p , w) , +In (p , o) , +Busy (d)

}

act ion patLeave s (Pa t i e n t p , Doctor d , O f f i c e o ,
WaitingRoom w)

{
I n (d , o) , Door (o , w) ,
−I n (p , o) , −Busy (d) , +In (p , w)

}

Silvio Ranise, Riccardo Traverso S&T retreat 12/28

waitingRoom

act ion wait ingRoom (Person p , WaitingRoom w1 ,
WaitingRoom w2)

{
Door (w1 , w2) ,
−I n (p , w1) , +In (p , w2)

}

Silvio Ranise, Riccardo Traverso S&T retreat 13/28

Initial Configurations

con f s t a r t 1
{

O f f i c e (o1) , O f f i c e (o2) , WaitingRoom (wr) ,
Door (wr , o1) , Door (o1 , wr) , Door (wr , o2) , Door (o2 , wr) ,
Doctor (d1) , Doctor (d2) , Pa t i e n t (p) ,
Owner (d1 , o1) , Owner (d2 , o2) ,
I n (p , wr) , I n (d1 , wr) , I n (d2 , wr)

}

con f s t a r t 2 { . . . }

. . .

Silvio Ranise, Riccardo Traverso S&T retreat 14/28

Verification

Starting from the initial configuration start1:

It is possible for a patient to be in an office outside of the
opening hours (i.e. before 7 am or after 7 pm)?

Pa t i e n t (p) , O f f i c e (o) , I n (p , o) ,
(0 <= time and time < 7) or (19 < time

and time < 24)

Could a doctor leave a patient alone in an office?

Doctor (d) , Pa t i e n t (p) , O f f i c e (o) , Owner (d , o) ,
I n (p , o) , not I n (d , o)

Silvio Ranise, Riccardo Traverso S&T retreat 15/28

Groove

Groove is a model checker for graph rewriting systems.

It has a rich input language with numeric fields, typed nodes,
and control programs.

Translating ALPS policies into graph grammars for Groove
provides

an interactive, graphical representation of the system, and
CTL/LTL model checking capabilities.

Silvio Ranise, Riccardo Traverso S&T retreat 16/28

Type Graph

Type and predicate declarations are encoded in type graph:

types become node types;
unary predicates become flags;
binary predicates become directed edges;

Time is represented via a real-valued field in a special node

Silvio Ranise, Riccardo Traverso S&T retreat 17/28

Rules: Time Handling

Time Transition:

Time Reset:

Silvio Ranise, Riccardo Traverso S&T retreat 18/28

Rule: patEnters

act ion pa tEn t e r s (Pa t i e n t p , Doctor d , O f f i c e o ,
WaitingRoom w) {

8 <= time and time < 19 , I n (d , o) , not Busy (d) , Door (
w, o) , −I n (p , w) , +In (p , o) , +Busy (d)

}

Silvio Ranise, Riccardo Traverso S&T retreat 19/28

Example execution from start1

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from start1

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from start1

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from start1

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from start1

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from start1

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Verification

Pa t i e n t (p) , O f f i c e (o) , I n (p , o) ,
(0 <= time and time < 7) or (19 < time and time < 24)

Target rule for reachability: does it eventually become
fireable?

Groove proves the system not to be safe, by providing an
example with a full execution trace.

Silvio Ranise, Riccardo Traverso S&T retreat 21/28

Verification

Silvio Ranise, Riccardo Traverso S&T retreat 22/28

Reachability Problem (Safety)

Given:

An ALPS policy.

An initial configuration θ0.

A goal G, i.e. conjunction of action pre-conditions (like an
action without post-conditions).

Problem:

Is it possible to reach a configuration satisfying G by starting
from θ0?

Silvio Ranise, Riccardo Traverso S&T retreat 23/28

Complexity Results

Without mandatory actions:

2-ExpSpace in the general case;

ExpSpace without time;

NExpTime without time and delete lists;

ExpTime without time, delete lists, and negative
pre-conditions.

With (unbounded) creation of values:

undecidable already with positive pre-conditions, delete lists,
add lists;

might be decidable by adding restrictions to the usage of
variables.

Silvio Ranise, Riccardo Traverso S&T retreat 24/28

Known Results

Particular cases of ALPS policies:

Checking safety is PSpace-complete for ARBAC policies.

The workflow satisfiability problem is NP-complete.

Silvio Ranise, Riccardo Traverso S&T retreat 25/28

Advantages

The same ALPS policy can be:

verified for safety with existing techniques from different
models;
enforced via a translation to XACML.

It makes possible to provide to different verification
techniques a common, more objective and easily comparable
set of benchmarks in ALPS.

Silvio Ranise, Riccardo Traverso S&T retreat 26/28

Future/Ongoing Work

Implementation of XACML translation.

Extensions to the language:

reflexive, symmetric, and transitive predicates;
goals.

Complete characterization of the complexity for checking
safety.

Study relationships with existing models and techniques.

Silvio Ranise, Riccardo Traverso S&T retreat 27/28

Thanks for the attention!

Silvio Ranise, Riccardo Traverso S&T retreat 28/28

	Introduction
	Action Language for Policy Specification
	Example: Smart Spaces
	Groove Translation
	Complexity and Known Results
	Conclusion

