ALPS: An Action Language for Policy
Specification and Automated Safety Analysis

Silvio Ranise Riccardo Traverso

-5 &
(\’:)f

Security & Trust Unit
Fondazione Bruno Kessler
Trento, ltaly

o
v

Trento, October 21th, 2014

Silvio Ranise, Riccardo Traverso S&T retreat

1/28

Many Models for Access Control

@ Several models, languages, and enforcement mechanisms have
been proposed for different scenarios.

o Discretionary
e Mandatory
o Role-Based
e Attribute-Based
@ We can choose the most suited model or even combine
multiple ones, depending on the type of authorization
conditions needed.

@ There are many types of access conditions we might want to
express.

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 2/28

The Problem

@ Too expressive models have to be restricted in order to make
safety decidable, making it more difficult to use them for
realistic scenarios.

@ Each model has its own characteristics and algorithms for
solving safety.

@ Sometimes it is possible to translate a policy into a different

model, but the very heterogeneous landscape of models makes

it a difficult task.

Silvio Ranise, Riccardo Traverso S&T retreat

=D

<

3/28

Action Language for Policy Specification (ALPS)

@ It preserves decidability of safety verification.

@ It can express many models and policies with contextual
constraints.

@ Intermediate language:

e focus on re-using existing, well-engineered verification
techniques by means of translations from/to other models;

e still, there is the possibility to develop new specific decidability
results for safety.

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 4/28

ALPS: Intermediate Language

Smart Spaces

XACML

/

Workflows =——> | ALPS Policy |=——>|Model Checking

/

ARBAC

Silvio Ranise, Riccardo Traverso

Groove

S&T retreat

=3¢

5/28

ALPS: Features

Inspired by the STRIPS action language.
e Pre-conditions: positive/negative guards.
@ Post-conditions: add list, delete list.
@ Priorities (normal vs mandatory).

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 6/28

ALPS: Features (cont'd)

° ...
@ Type predicates with subtyping.
@ Immutable predicates.

@ Notion of time (modulo some T).

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

7/28

Example: Smart Spaces

Smart Spaces XACML

Workflows = | ALPS Policy |=——=>|Model Checking

ARBAC Groove

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

8/28

Doctor Cabinet Example

We model the policy for a cabinet of a group of doctors.

@ A person is either a doctor or a patient.

Several waiting rooms, freely accessible, connected to offices.

Each office is owned by a doctor.

Doctors arrive between 7am and 9am.

Patients enter offices one at a time, between 8am and 7pm.

Doctors leave anytime, if they are not busy with a patient.

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

9/28

Declarations

maxtime 24;

type Space, Office(Space), WaitingRoom (Space);
type Person, Doctor(Person), Patient(Person);

immutable predicate Owner(Doctor, Office);
immutable predicate Door(Space, Space);

predicate Busy(Doctor), In(Person, Space);

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 10/28

docArrives and doclLeaves

mandatory action docArrives(Doctor d, WaitingRoom w,

Office o)
{
7 <= time and time <= 9,
Owner(d, o), Door(w, o),
—In(d, w), +In(d, o)
}

action doclLeaves(Doctor d, Office o, WaitingRoom w)

not Busy(d), Door(o, w),
—In(d, o), +In(d, w)
}

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

11/28

patEnters and patlLeaves

action patEnters(Patient p,

{

}

action patlLeaves(Patient p,

{

}

WaitingRoom w)

8 <= time and time < 19,
not Busy(d), Door(w, o),
—=In(p, w), +In(p, o), +Busy(d)

In(d, o),

WaitingRoom w)

In(d, o),

—In(p, o),

Door(o, w),

Silvio Ranise, Riccardo Traverso

Doctor d,

Doctor d,

—Busy(d), +In(p, w)

S&T retreat

Office o,

Office o,

=3¢

12/28

waitingRoom

action waitingRoom (Person p, WaitingRoom wl
WaitingRoom w2)

Door(wl, w2),
} —In(p, wl), +In(p, w2)

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

13/28

Initial Configurations

conf startl

{
Office(ol), Office(02), WaitingRoom(wr),
Door(wr,01), Door(ol,wr), Door(wr,02), Door(o2,wr),
Doctor(dl), Doctor(d2), Patient(p),
Owner(dl, ol), Owner(d2, 02),
In(p, wr), In(dl, wr), In(d2, wr)

}

conf start2 { ... }

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 14/28

Verification

Starting from the initial configuration start1:

@ It is possible for a patient to be in an office outside of the
opening hours (i.e. before 7 am or after 7 pm)?

Patient(p), Office(o), In(p, o),
(0 <= time and time < 7) or (19 < time
and time < 24)

@ Could a doctor leave a patient alone in an office?

Doctor (d), Patient(p), Office(o), Owner(d, o),
In(p, o), not In(d, o)

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

15/28

Groove

Groove is a model checker for graph rewriting systems.
@ It has a rich input language with numeric fields, typed nodes,
and control programs.

@ Translating ALPS policies into graph grammars for Groove
provides

e an interactive, graphical representation of the system, and
o CTL/LTL model checking capabilities.

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 16/28

Type Graph

ALPSClockNode
clock: real
S
pace In Person
Door

&

WaitingRoom | | Office l(—Owner— Doctor m

Busy

@ Type and predicate declarations are encoded in type graph:

e types become node types;
e unary predicates become flags;
e binary predicates become directed edges;

@ Time is represented via a real-valued field in a special node ::<

Silvio Ranise, Riccardo Traverso S&T retreat 17/28

Rules: Time Handling

Time Transition:

ALPSClockNode
clock := self.clock + 0.5
self.clock < 24.0

Time Reset:

ALPSClockNode
clock := 0.00
self.clock >= 24.0

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

18/28

Rule: patEnters

ALPSClockNode
self.clock >= 8.0 & self.clock < 19.0

Doctor
+ Busy
! Busy

In In

In

m Door WaitingRoom

action patEnters(Patient p, Doctor d, Office o,
WaitingRoom w) {
8 <= time and time < 19, In(d, o), not Busy(d), Door(
w, o), —In(p, w), +In(p, o), +Busy(d) =:<

Silvio Ranise, Riccardo Traverso S&T retreat 19/28

Example execution from startl

ALPSClockNode
clock = 0.0

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from startl

ALPSClockNode
clock = 7.0

In Owner

Door

=
) E

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from startl

ALPSClockNode
clock = 7.0

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from startl

ALPSClockNode
clock = 7.0

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from startl

ALPSClockNode
clock = 8.5

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Example execution from startl

ALPSClockNode
clock = 8.5
[Doctor] [Patient] poctor
Busy
In In In

Owner N\Nner
Door Door—){ Office
Door /

Door

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 20/28

Verification

ALPSClockNode
self.clock >= 0.0 & self.clock < 7.0 | self.clock > 19.0 & self.clock < 24.0

(it} —n— {0

Patient(p), Office(o), In(p, o),
(0 <= time and time < 7) or (19 < time and time < 24)

@ Target rule for reachability: does it eventually become
fireable?

@ Groove proves the system not to be safe, by providing an
example with a full execution trace.

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 21/28

Verification

(Patient] e
Busy

ALPSClockNode
clock = 19.5
In

In In
Owner Owner
m Door WaitingRoom Door
Door Door

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 22/28

Reachability Problem (Safety)

Given:
@ An ALPS policy.
@ An initial configuration 6.

@ A goal G, i.e. conjunction of action pre-conditions (like an
action without post-conditions).

Problem:

@ Is it possible to reach a configuration satisfying G by starting
from 647

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 23/28

Complexity Results

Without mandatory actions:
o 2-EXPSPACE in the general case;
o EXPSPACE without time;
o NEXPTIME without time and delete lists;

e EXPTIME without time, delete lists, and negative
pre-conditions.

With (unbounded) creation of values:
@ undecidable already with positive pre-conditions, delete lists,
add lists;
@ might be decidable by adding restrictions to the usage of
variables.

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 24/28

Known Results

Particular cases of ALPS policies:
@ Checking safety is PSPACE-complete for ARBAC policies.
@ The workflow satisfiability problem is NP-complete.

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

25/28

Advantages

@ The same ALPS policy can be:

o verified for safety with existing techniques from different
models;
e enforced via a translation to XACML.

@ It makes possible to provide to different verification
techniques a common, more objective and easily comparable
set of benchmarks in ALPS.

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 26/28

Future/Ongoing Work

@ Implementation of XACML translation.
@ Extensions to the language:

o reflexive, symmetric, and transitive predicates;
e goals.

@ Complete characterization of the complexity for checking
safety.

@ Study relationships with existing models and techniques.

=3¢

Silvio Ranise, Riccardo Traverso S&T retreat 27/28

Thanks for the attention!

Silvio Ranise, Riccardo Traverso S&T retreat

=3¢

28/28

	Introduction
	Action Language for Policy Specification
	Example: Smart Spaces
	Groove Translation
	Complexity and Known Results
	Conclusion

