

VLOC: Verifying the Physical Location of A Virtual Machine In Cloud

Mojtaba Eskadnari *Advisors:*

- Bruno Crispo,
- Anderson Santana de Oliveira

[Oct 2014]

Your data is here

Maybe it should be here

Motivation

- Is data within some political boundary
- Privacy protections
- Intellectual property protections
- Regulatory compliance

What is the problem?

What is the problem?

What is the problem?

State of the Art

Using a GPS enabled device

A. Albeshri, C. Boyd, and J. Nieto, "**GeoProof**: Proofs of geographic location for cloud computing environment," *in Distributed Computing Systems Workshops (ICDCSW)*, 2012₉

Latency-based measurement

Peterson et al., "The importance of geo-locating data in the cloud" 11 in USENIX on HotCloud 2011

Latency-based with Observation

M. Gondree and Z. N. Peterson, "GeoLocation of data in the cloud," 12 *in CODASPY* 2013.

The Main Drawbacks

- Various service layers (App, Platform, OS, …)
- Requires hardware equipments (*i.e.* external

landmarks)

The Main Drawbacks

- Various service layers (App, Platform, OS, …)
- Requires hardware equipments (*i.e.* external

landmarks)

The Main Drawbacks

- Various service layers (App, Platform, OS, …)
- Requires hardware equipments (*i.e.* external
 - landmarks)

What is VLOC?

- A tool installed on VM
- Initialised automatically
- Adapts to the environment
- Verifies its physical location

How it works (1): Finding servers

How it works (2): Coordinates

IPaddressAPI.com

id	url		lat		lon
1	google.com		37.41	192	-122.0574
2	facebook.com		37.4	59	-122.1781
3	youtube.com		37.41	92	-122.0574
4	vahoo.com		37.42	49	-122.0074
5	baidu.com		39.928	39	116.3885
6	wikipedia.org	-	37.789	8 -	17.1767
7	aq.com	3	39.142	5 1	20.1614
8	taobao.com	17	7 7697	7 -1	22.3933
9	twitter.com	3	7.6801	-12	22.1206
10	live.com	4	7.6103	-12	4.3915
11	amazon.com	33	3.7516	-12	2.0574
12	linkedin.ed	37	9289	116	5.3883
13	google.	39	.9289	116	1667
14	hao123.com		22.25	114	0574
15	weibo.com	37.	4192		
17	blogsport				
-	*				

How it works (3): Latency measurement

id	url	lat	lon
1	google.com	37.4	
2	facebook.com	37.4	
3	youtube.com	37.41	
4	yahoo.com	37.42	
5	baidu.com	39.92	
6	wikipedia.org	37.70:	
7	qq.com	30.293	
8	taobao.com	37.769	N
9	twitter.com	47.6801	17
10	live.com	47.6103	1 Fai
11	linkedin.com	33.7512	
12	google.co.in 3	9.9289	1 ta
14	sina.com.cn 3	9.9289	
15	hao125.com	7.4192	0
16	blogspot.com		
17			

How it works (3): Latency measurement

How it works (4): Training

How it works (5): Localisation

Experimental Results (1): Accuracy

Range (KM)

Experimental Results (2): No. of Landmarks

Number of landmarks

Experimental Results (3): Coefficients

Update process captured 20 times

Limitations

- Data must not be moved during initialisation
- Network latency changes

(frequent observation is required)

- Parameter tunning needed to achieve the best accuracy
- For very close regions, it is not accurate enough. (e.g. north of France and Belgium)

Conclusions

- Does not require any particular hardware
- Does not require a fixed network of landmarks
- Adaptable to dynamic environments like the Internet
- Deployed as a software tool
- Can be employed in monitoring and enforcement of location based policies.
- Does not relay to the trustworthiness of the cloud provider

- **Input**: *L*: list of websites; *IPG*: reference of IP geolocation service; *H*: current host information;
- **Output**: L': List of websites with their collected geolocation information;
- 1 L' = new List();
- 2 for (w in L) do
- g = IPG.getInfo(w);
- 4 d = distance(H, g);
- 5 $r = \{w, g, d\};$
- 6 add r to L';

7 end

8 return L';

Algorithm 1: The data collection algorithm.

Input: L': List of websites with their geolocation information: R: Range of operation; C: Confidence factor; **Output**: L'': List of chosen websites with measured RTT: 1 L'' = new List(); **2** for (r in L') do if $(r_d < R)$ then 3 for i = 1 to C do 4 **Send** an HTTP request to r_w ; 5 $t_{start} = Now();$ 6 Wait for respond from r_w ; 7 res = The received response; 8 $t_{end} = \text{Now}();$ 9 if (res was successful) then 10 $\Delta t_i = t_{end} - t_{start};$ 11 end 12 end 13 $rtt = \langle \Delta t_{1...C} \rangle$; // Average 14 $rec = \{w, rtt\};$ 15 add rec to L''; 16 end 17 18 end 19 return L''; Algorithm 2: Measuring and collecting round trip time (RTT) latencies of the nearby websites.

(a) An example of extremely bad chosen landmarks.

(b) An example of desirable chosen landmarks.

Factors impacting on the accuracy

$$Acc \propto \frac{P \times C}{F} - \left\| \frac{d}{dR} f(R) \right\|$$

- Acc is the accuracy
- **P** is the frequency of latency measurement
- **C** is the confidence factor
- F refers to the network fluctuation
- *f(R)* is a function representing the changes of accuracy based on changes of range of operation

Imposing **delay** on network packets

Further Information:

- No of collected URLs: 187,439
- No. of Observed Servers for Trento: 17,264
- Used ML technique: *Polynomial Regression*
- Interface: *Web*
- Implemented in: PHP/ MySQL running on Apache/Ubuntu

(8	param 🏧 IBM H 🐟 About 🚦	localh Index of / http:php httphp
🔶 🕑 lo	calhost/www/VLOC/training/train_geoLoc	ationTest.php 🔻 C 🛛 🖉 🗸 🖨
	Source server:	Trento (UniTN) POVO 2
	Operation range (K	(M): From 50 To 1500
		Start

😣 🗢 🗉 🛛 Mozilla Firefox	
< الما الما الما الما الما الما الما الم	Famp 👖 Netcr 🚦 param 🎟 IBM H 🐟 About 🔛 localh Index of / httphp × > 🕂
Iccalhost/www/VLOC/training/train_withNoise.php	▼ C S ⊽ Google Q ☆ 自 ♣ 🏫
Source server:	Trento (UniTN) POVO 2
Operation range (KM):	400
Delay Range(%):	Min 0.02 Max 0.50
Increasing volume of noisy packets (%):	0.05 i.e. Increase 5% of the volume of delayed packets in every step
Max Volume of Delayed Packets(%):	0.60
	Start

