Automatic Security Analysis of Business Processes

Daniel Ricardo dos Santos^{1,2}

Advisors: Silvio Ranise¹ Luca Compagna² Serena Ponta²

¹Security and Trust - FBK ²SAP Labs France

October 21st, 2014


Introduction	State of the art	Preliminary Results	Future Work	References
Outline				

O Preliminary Results

 This work is part of the SECENTIS project and aims to apply the resulting tools on the SAP HANA database and cloud platform

A European Industrial Doctorate on Security and Trust

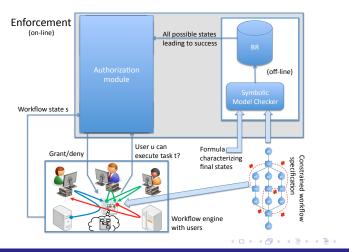
- Business processes and process-aware applications need to enforce security policies in the form of complex authorization constraints
- Separation/Binding of Duty and others related to the execution history or contextual information (e.g., location/time)
- Termination (WSP), authorization delegation, and resiliency

- Developers may directly implement a policy in the application or use run-time enforcement monitors provided by the execution platform
- We must verify that the policy enforced by the application and the intended policy, specified by the business rules, are compatible
- We work on methods for synthesizing run-time monitors and analyzing database-backed web applications that realize workflows

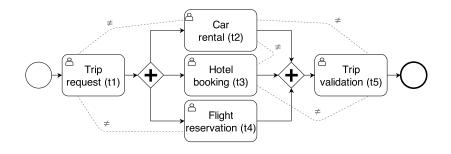
- Given a workflow specification and a set of authorization constraints (policy), generate a run-time monitor that enforces the policy
- Given a process-aware application implemented in JavaScript+SQL and a set of authorization constraints (policy), detect and correct vulnerabilities in policy enforcement

- Workflow Satisfiability has been extensively studied, but not the synthesis of a full monitor for causality and authorization constraints [1, 4]
- Deutsch et al. [6, 7, 5] worked on the specification and verification of data-driven web applications and business processes with correctness properties specified in temporal logic, but no special attention to security
- Policy-weaving problem: taking as input a program, a high-level policy and a description of how system calls affect privilege; automatically rewrite the program in a way that it satisies the policy [9, 8, 10]

Automated Synthesis of Run-time Monitors

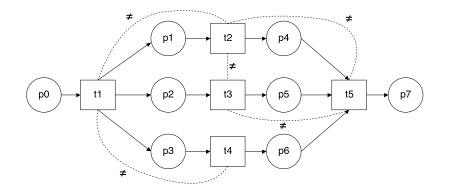

- New methodology to automatically synthesize run-time monitors capable of ensuring the successful termination of workflows while enforcing authorization policies and SoD constraints
- Divided in two parts: (i) specification and (ii) verification of security-aware workflows.
- Specification starts with Petri nets for the control-flow and security requirements, then derives a symbolic representation to be used by a model checker, considering a finite but unknown number of users.

Automated Synthesis of Run-time Monitors


- The verification part has an off-line and an on-line phase, in the off-line phase we compute all possible terminating executions of the workflow and in the on-line phase we use this information to synthesize a run-time monitor, that can be implemented in Datalog or SQL.
- Control-flow is DAG (no loops)
- Data-flow is completely abstracted

Architecture

Example - BPMN

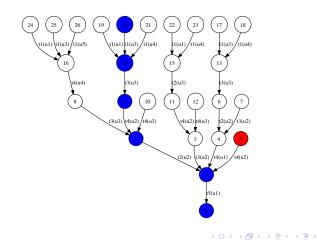


Security and Trust Retreat - FBK - October 21, 2014

★ E > ★ E

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Example - Petri net

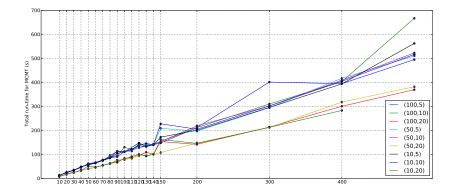

< E Security and Trust Retreat - FBK - October 21, 2014

ъ

Example - Transition System

event		enabled	action		
	CF	Auth	CF	Auth	
t1(u)	$p0 \wedge \neg d_{t1}$	$a_{t1}(u)$	$p0, p1, p2, p3, d_{t1}$:= F, T, T, T, T	$\begin{array}{l} h_{t1}(u) \\ \vdots = T \end{array}$	
t2(u)	$p1 \wedge \neg d_{t2}$	$\begin{array}{c} a_{t2}(u) \wedge \neg h_{t3}(u) \\ \wedge \neg h_{t1}(u) \end{array}$	$p1, p4, d_{t2} \\ := F, T, T$	$\begin{array}{l}h_{t2}(u)\\ :=T\end{array}$	
t3(u)	$p2 \wedge \neg d_{t3}$	$a_{t3}(u) \wedge \neg h_{t2}(u)$	$p2, p5, d_{t3} \\ := F, T, T$	$\begin{array}{l}h_{t3}(u)\\ :=T\end{array}$	
t4(u)	$p3 \wedge \neg d_{t4}$	$a_{t4}(u) \wedge \neg h_{t1}(u)$	$p3, p6, d_{t4} \\ := F, T, T$	$h_{t4}(u) \\ := T$	
t5(u)	$p4 \wedge p5 \wedge p6 \wedge \neg d_{t5}$	$\begin{array}{c} a_{t5}(u) \wedge \neg h_{t3}(u) \\ \wedge \neg h_{t2}(u) \end{array}$	$p4, p5, p6, p7, d_{t5} \\ := F, F, F, T, T$	$\begin{array}{l}h_{t5}(u)\\ :=T\end{array}$	

Example - State Space

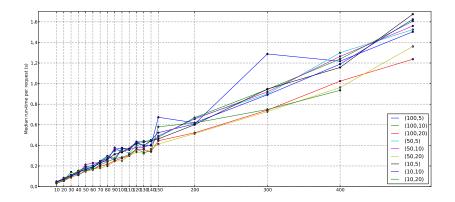


•
$$U = \{a, b, c\}, R = \{r_1, r_2, r_3\}$$

- $UA = \{(a, r1), (a, r2), (a, r3), (b, r2), (b, r3), (c, r2)\}$
- $TA = \{(r_3, t1), (r_2, t2), (r_2, t3), (r_1, t4), (r_2, t5)\}$

1	CF			Auth			can_do	
#	Token in	h_{t1}	h_{t2}	h_{t3}	h_{t4}	h_{t5}	(u,t)	Resp.
0	p0	-	-	-	-	-	(a,t1)	deny
1	p0	-	-	-	-	-	(b,t1)	grant
2	p1, p2, p3	b	-	-	-	-	(b, t2)	deny
3	p1, p2, p3	b	-	-	-	-	(a, t2)	grant
4	p4, p2, p3	b	a	-	-	-	(c,t3)	grant
5	p4, p5, p3	b	a	с	-	-	(a, t4)	grant
6	p4, p5, p6	b	a	с	a	-	(b, t5)	grant
7	p7	b	a	с	a	b	-	-

Introduction	State of the art	Preliminary Results	Future Work	References
Results				



Security and Trust Retreat - FBK - October 21, 2014

æ

<ロ> <同> <同> < 同> < 同>

Introduction	State of the art	Preliminary Results	Future Work	References
Results				

・ロト ・四ト ・ヨト ・ヨト Security and Trust Retreat - FBK - October 21, 2014

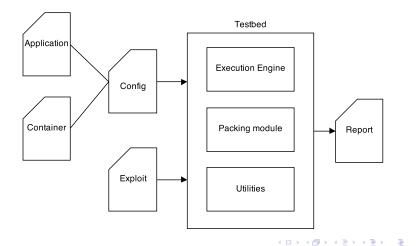
æ

TestREx: a testbed for repeatable exploits

- A framework for packing and running applications with their environments; injecting exploits and monitoring their success; and generating security reports
- Provided with a corpus of example vulnerabilities
- Goal: A benchmark on which we can test the effectiveness of our techniques
- Developed in collaboration with Stanislav Dashevskyi

- Overcome the limitations of our current monitor approach: control- and data-flow
- Test our results in SAP HANA, using workflows provided by them and their execution engine
- Work on policy analysis and policy-weaving for JavaScript
- Integrate TestREx with policy analysis and testing

Future Work - other ideas to be considered


- User-role assignment ensuring least privilege in workflows
- Purpose-based access control for workflows

State of the art	Preliminary Results	Future Work	References
	Thank you!		
	-		
(dossantos@fbk.eu		

・ロト・(四ト・(川下・(日・)) 切べつ

TestREx: a testbed for repeatable exploits

Security and Trust Retreat - FBK - October 21, 2014

Introduction

- [1] David A. Basin, Samuel J. Burri, and Günter Karjoth. Dynamic enforcement of abstract separation of duty constraints. In *ESORICS*, pages 250–267, 2009.
- [2] Paolina Centonze, Gleb Naumovich, Stephen J. Fink, and Marco Pistoia. Role-based access control consistency validation. In *Proceedings of the 2006 International Symposium on Software Testing and Analysis*, ISSTA '06, pages 121–132, New York, NY, USA, 2006. ACM.
- [3] Adam Chlipala. Static checking of dynamically-varying security policies in database-backed applications. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI'10, pages 1–, Berkeley, CA, USA, 2010. USENIX Association.
- [4] Jason Crampton, Michael Huth, and JimHuan-Pu Kuo. Authorized workflow schemas: deciding realizability through ltl(f) model checking. *International Journal on* > 2

Software Tools for Technology Transfer, 16(1):31–48, 2014.

- [5] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic verification of data-centric business processes. In *Proceedings of the 12th International Conference on Database Theory*, ICDT '09, pages 252–267, New York, NY, USA, 2009. ACM.
- [6] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-driven web services. In *Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems*, PODS '04, pages 71–82, New York, NY, USA, 2004. ACM.
- [7] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-driven web applications. *Journal of*

Computer and System Sciences, 73(3):442 – 474, 2007. Special Issue: Database Theory 2004.

- [8] Matthew Fredrikson, Richard Joiner, Somesh Jha, Thomas W. Reps, Phillip A. Porras, Hassen Saïdi, and Vinod Yegneswaran. Efficient runtime policy enforcement using counterexample-guided abstraction refinement. In P. Madhusudan and Sanjit A. Seshia, editors, CAV, volume 7358 of Lecture Notes in Computer Science, pages 548–563. Springer, 2012.
- [9] WilliamR. Harris, Somesh Jha, and Thomas Reps. Secure programming via visibly pushdown safety games. In P. Madhusudan and SanjitA. Seshia, editors, *Computer Aided Verification*, volume 7358 of *Lecture Notes in Computer Science*, pages 581–598. Springer Berlin Heidelberg, 2012.
- [10] Richard Joiner, Thomas Reps, Somesh Jha, Mohan 🗉 🖉 🤊 🕫

Dhawan, and Vinod Ganapathy. Efficient runtime enforcement techniques for policy weaving. In Proceedings of the 22nd ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE 2014), 2014.

