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SECENTIS

This work is part of the SECENTIS project and aims to
apply the resulting tools on the SAP HANA database and
cloud platform
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Context

Business processes and process-aware applications need
to enforce security policies in the form of complex
authorization constraints

Separation/Binding of Duty and others related to the
execution history or contextual information (e.g.,
location/time)

Termination (WSP), authorization delegation, and
resiliency
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Problem

Developers may directly implement a policy in the
application or use run-time enforcement monitors provided
by the execution platform

We must verify that the policy enforced by the application
and the intended policy, specified by the business rules,
are compatible

We work on methods for synthesizing run-time monitors
and analyzing database-backed web applications that
realize workflows
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Research Goals

Given a workflow specification and a set of authorization
constraints (policy), generate a run-time monitor that
enforces the policy

Given a process-aware application implemented in
JavaScript+SQL and a set of authorization constraints
(policy), detect and correct vulnerabilities in policy
enforcement
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State of the art

Workflow Satisfiability has been extensively studied, but
not the synthesis of a full monitor for causality and
authorization constraints [1, 4]

Deutsch et al. [6, 7, 5] worked on the specification and
verification of data-driven web applications and business
processes with correctness properties specified in
temporal logic, but no special attention to security

Policy-weaving problem: taking as input a program, a
high-level policy and a description of how system calls
affect privilege; automatically rewrite the program in a way
that it satisies the policy [9, 8, 10]
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Automated Synthesis of Run-time Monitors

New methodology to automatically synthesize run-time
monitors capable of ensuring the successful termination of
workflows while enforcing authorization policies and SoD
constraints

Divided in two parts: (i) specification and (ii) verification of
security-aware workflows.

Specification starts with Petri nets for the control-flow and
security requirements, then derives a symbolic
representation to be used by a model checker, considering
a finite but unknown number of users.
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Automated Synthesis of Run-time Monitors

The verification part has an off-line and an on-line phase,
in the off-line phase we compute all possible terminating
executions of the workflow and in the on-line phase we use
this information to synthesize a run-time monitor, that can
be implemented in Datalog or SQL.

Control-flow is DAG (no loops)

Data-flow is completely abstracted
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Architecture
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Example - BPMN
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Example - Petri net
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Example - Transition System

last task to be executed. The fact that there is at most one
token per place is an invariant of the Petri net. This allows
us to symbolically represent the net as follows: we introduce
a Boolean variable per place (named as the places in Fig-
ure 2) together with a Boolean variable representing the fact
that a task has already been executed (denoted by dt and
if assigned to true implies that task t has been executed).
So, for instance, the enabling condition for the execution
constraint on task t1 can be expressed as p0^¬dt1 meaning
that the token is in place p0 and transition t1 has not yet
been executed. The e↵ect of executing transition t1 is to
assign F (alse) to p0 and T (rue) to p1, p2, p3, and dt1; in
symbols, we write p0 := F ; p1, p2, p3, dt1 := T, T, T, T . The
other transitions are modelled similarly.

Besides the constraints on the execution of tasks, Figure 2
shows also the same authorization constraints of Figure 1.
These are obtained by taking into consideration both the
access control policy P granting or denying users the right
to execute tasks and the SoD constraints between pairs of
tasks. To formalize these, we introduce two functions at and
ht from users to Boolean, for each task t which are such that
at(u) is true i↵ u has the right to execute t according to the
policy P and ht(u) is true i↵ u has executed task t. Notice
that at is a function that behaves as an abstract interface to
the policy P whereas ht is a function that evolves over time
and keeps track of which users have executed which tasks.
For instance, the enabling condition for the authorization
constraint on task t1 is simply at1(u), i.e. it is required that
the user u has the right to execute t1, and the e↵ect of its
execution is to record that u has executed t1, i.e. ht1(u) := T
(notice that this assignment leaves unchanged the value re-
turned by ht1 for any user u0 distinct from u). Notice that it
is useless to take into account the SoD constraints between
t1 and t2, t4 when executing t1 since t2 and t4 will always
be executed afterwards. As another example, let us con-
sider the enabling condition for the authorization constraint
on t2: besides requiring that u has the right to execute t2
(i.e. at2(u)), we also need to require the SoD constraints
with t1 and t3 (not that with t5 since this will be executed
afterwards), i.e. that u has executed nor t1 (i.e. ¬ht1(u))
neither t3 (i.e. ¬ht3(u)). The authorization constraints on
the other tasks are modelled in a similar way.

Table 1 shows the formalization of all transitions in the ex-
tended Petri net of Figure 2. The first column reports the
name of the transition together with the fact that it is depen-
dent on the user u taking the responsibility of its execution.

Table 1: Workflow as symbolic transition system

event enabled action
CF Auth CF Auth

t1(u) p0^¬dt1 at1(u) p0, p1, p2, p3, dt1

:= F, T, T, T, T
ht1(u)
:= T

t2(u) p1^¬dt2 at2(u) ^ ¬ ht3(u)
^ ¬ ht1(u)

p1, p4, dt2

:= F, T, T
ht2(u)
:= T

t3(u) p2^¬dt3 at3(u)^¬ht2(u) p2, p5, dt3

:= F, T, T
ht3(u)
:= T

t4(u) p3^¬dt4 at4(u)^¬ht1(u) p3, p6, dt4

:= F, T, T
ht4(u)
:= T

t5(u) p4^p5^
p6^¬dt5

at5(u) ^ ¬ ht3(u)
^ ¬ ht2(u)

p4, p5, p6, p7, dt5

:= F, F, F, T, T
ht5(u)
:= T

The second column shows the enabling condition divided in
two parts: one (CF) pertaining to the execution constraints
and the other (Auth) to the authorization constraints. The
third and last column lists the e↵ects of the execution of
the transition again divided in two parts: one (CF) for the
workflow and the other (Auth) for the authorization.

The initial state of the security-sensitive workflow is de-
scribed by the initial formula

p0 ^
^

pi,i=1,...,7

¬pi ^
^

dti,i=0,...,5

¬dti ^
^

hti,i=0,...,5

8u.¬hti(u) (1)

saying that there is just one token in p0, no task has been ex-
ecuted, and indeed no user has yet executed any of the tasks,
whereas a state of a terminating execution of the workflow
by the goal formula

p7 ^
^

pi,i=0,...,6

¬pi ^
^

dti,i=0,...,5

dti (2)

saying that there is just one token in p7 and all the tasks
have been executed.

Formally, the way in which we specify the transition systems
corresponding to security-sensitive workflows can be seen as
an extended version of the assertional framework proposed
in [34]. We emphasize that obtaining, from the extended
BPM notation of Figure 1, the symbolic representation S of
the initial and goal formulae with that of the transitions in
Table 1 is a fully automated process.

Exploring the search space. After obtaining the symbolic
representation of the initial and goal states together with
the transitions of the security-sensitive workflow, we invoke
a symbolic model checker in order to compute the symbolic
representation R of the set of (reachable) states visited while
executing all possible sequences of transitions leading from
an initial to a goal state. A crucial assumption of our ap-
proach is that the model checker is able to compute R for any
finite number of users. By doing this, the interface functions
at’s can be instantiated with any policy P , i.e. containing
any number of users. In summary, our goal is to compute
a parametric—in the number n of users—representation of
the set of states visited while executing all possible termi-
nating sequences of transitions. From now on, we write Rn

to emphasize this fact.

Although the computation of Rn seems to be a daunting
task, there exist techniques available in the literature about
parameterized model checking (see the seminal paper [1])
that allow us to do this. Among those available, we have
chosen the Model Checking Modulo Theories approach pro-
posed in [25] for it uses first-order formulae as the symbolic
representation of transition systems and the availability of
tools, such as mcmt [26], which is capable of returning the
set of reachable states as a first-order formula Rn.

For instance, Figure 3 shows a graph-like representation of
the formula Rn for the security-sensitive workflow described
by the symbolic transition system derived from Figure 1.
Each node is associated to a first-order formula: node 0 (bot-
tom of the figure) is labelled by the goal formula (2), nodes
17–26 (top of the figure) are labelled by formulae describing
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Example - State Space
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Example - Monitor

U = {a,b, c},R = {r1, r2, r3}
UA = {(a, r1), (a, r2), (a, r3), (b, r2), (b, r3), (c, r2)}
TA = {(r3, t1), (r2, t2), (r2, t3), (r1, t4), (r2, t5)}

such disequalities). For instance, the formula r1 labelling

node 1 in Figure 3 is rCF
1 ^ rAuth

1 where

rCF
1 := ¬p0 ^ ¬p1 ^ ¬p2 ^ ¬p3 ^ p4 ^ p5 ^ p6 ^

dt1 ^ dt2 ^ dt3 ^ dt4 ^ ¬dt5

rAuth
1 := ⇢Auth

1 (u1)

⇢Auth
⌫ (u1) := at5(u1) ^ ¬ht2(u1) ^ ¬ht3(u1)

with z0 renamed to u1 and there are no existentially quan-
tified variables.

In general, each r⌫ in the expression (3) for the formula Rn

can be written as

rCF
⌫ ^ at(z0) ^ 9z0, z1, ..., zk.⇢Auth

⌫ (z0, z1, ..., zk) (4)

and describes a set of states in which user z0 executes task
t while guaranteeing that the workflow will terminate since
⌫ is one of the nodes in the graph computed by the model
checker while generating all terminating sequences of tasks.
In other words, (4) implies that z0 can execute task t or,
equivalently written as a Datalog clause: can do(z0, t)  
(4), where can do is a Boolean function returning true i↵
a user (first argument) is entitled to execute a task (second
argument) while all execution and authorization constraints
are satisfied and the workflow can terminate. Notice that
can do(z0, t) (4) is a Datalog clause. So, we generate the
following Datalog clauses

can do(z0, t) rCF
⌫ ^ at(z0) ^ ⇢Auth

⌫ (z0, z1, ..., zk)

for each ⌫ 2 N . In the following, let Dn be the Datalog
program composed of all the clauses of the form (5). For
instance, the Datalog clause corresponding to node 1 is

can do(u1, t5)  ¬p0 ^ ¬p1 ^ ¬p2 ^ ¬p3 ^ p4 ^ p5 ^ p6 ^
dt1 ^ dt2 ^ dt3 ^ dt4 ^ ¬dt5 ^
at5(u1) ^ ¬ht2(u1) ^ ¬ht3(u1)

It is not di�cult to show that can do(u, t) i↵ there exists
a disjunct of the form (4) in Rn for a given number n of
users. Finally, observe that clauses of the form (5) contain
negations but are non-recursive.

Specifying the policy P . We are left with the problem of
specifying the access control policy P for a given number
n of users. As already observed above, there should be at
least three distinct users in the system to be able to ter-
minate the execution of the workflow in Figure 1. So, to
illustrate, let U = {a, b, c} be the set of users and use the
Role-Based Access Control (RBAC) model to express the
policy. This means that we have a set R = {r1, r2, r3} of
roles which are indirections between users and (permissions
to execute) tasks. Let UA = {(a, r1), (a, r2), (a, r3), (b, r2),
(b, r3), (c, r2)} be the user-role assignments and TA = {(r3,
t1), (r2, t2), (r2, t3), (r1, t4), (r2, t5)} be the role-task assign-
ment. Then, a user u can execute task t i↵ there exists a
role r such that (u, r) 2 UA and (r, t) 2 TA. This can be
formalized by the following Datalog clauses:

ua(a, r1) ua(a, r2) ua(a, r3) ua(b, r2) ua(b, r3) ua(c, r2)
pa(r3, t1) pa(r2, t2) pa(r2, t3) pa(r1, t4) pa(r2, t5)
at(u)  ua(u, r) ^ pa(r, t) for each t 2 {t1, ..., t5}

and denoted by DP . By taking the union of the clauses of
Dn and DP , we build a Datalog program Mn=3 allowing us
to monitor the security-sensitive workflow of Figure 1. I.e.
Mn=3 is capable of answering queries of the form can do(u,
t) in such a way that all execution and authorization con-
straints are satisfied and the workflow execution terminates.
An example of a run of the monitor is in Table 2, where
each line represents a state of the system; columns CF and
Auth describe the values of the variables in that state (“To-
ken in” shows which places have a token and the various hti

hold the name of the user who executed task ti); can do(u, t)
represents user u requesting to execute task t and Resp. is
the corresponding response returned by the monitor (grant
or deny the request). The execution in the table shows two

Table 2: A run of the monitor program Mn=3 for the
security-sensitive workflow in Figure 1

CF Auth can do
# Token in ht1 ht2 ht3 ht4 ht5 (u, t) Resp.

0 p0 - - - - - (a, t1) deny
1 p0 - - - - - (b, t1) grant
2 p1, p2, p3 b - - - - (b, t2) deny
3 p1, p2, p3 b - - - - (a, t2) grant
4 p4, p2, p3 b a - - - (c, t3) grant
5 p4, p5, p3 b a c - - (a, t4) grant
6 p4, p5, p6 b a c a - (b, t5) grant
7 p7 b a c a b - -

denied requests, one in line 0 and one in line 2. In line 0,
user a requests to execute task t1 but this is not possible
since a is the only user authorized to execute t4, and if a
executes t1, he/she will not be allowed to execute t4 because
of the SoD constraint between t1 and t4 (see Figure 1). In
line 2, user b requests to execute task t2 but again this is
not possible since b has already executed task t1 and this
would violate the SoD constraint between t1 and t2. All the
other requests are granted, as they do not violate neither
execution nor authorization constraints.

To conclude this section, we observe that we have described
the key ideas underlying our technique to synthesize run-
time monitors. However, if we want to consider large real-
world systems, we have to consider scalability issues espe-
cially in the o↵-line phase when generating all possible ter-
minating execution sequences of the security-sensitive work-
flow. This issue is discussed below in Section 3.

3. AUTOMATED SYNTHESIS OF RUN-TIME
MONITORS

Considering the specification of workflows as transition sys-
tems presented in Section 2, we now describe the approach
taken by the model checker mcmt in order to compute the
reachability tree that represents all terminating executions
of the workflow.

As previoulsy mentioned, the verification of security-aware
workflows is divided in two phases: o↵-line and on-line. We
also present in this section our approach for scalability.

3.1 Off-line
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Results
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TestREx: a testbed for repeatable exploits

A framework for packing and running applications with their
environments; injecting exploits and monitoring their
success; and generating security reports

Provided with a corpus of example vulnerabilities

Goal: A benchmark on which we can test the effectiveness
of our techniques

Developed in collaboration with Stanislav Dashevskyi

Security and Trust Retreat - FBK - October 21, 2014



Introduction State of the art Preliminary Results Future Work References

Future Work

Overcome the limitations of our current monitor approach:
control- and data-flow

Test our results in SAP HANA, using workflows provided
by them and their execution engine

Work on policy analysis and policy-weaving for JavaScript

Integrate TestREx with policy analysis and testing
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Future Work - other ideas to be considered

User-role assignment ensuring least privilege in workflows

Purpose-based access control for workflows
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Thank you!
dossantos@fbk.eu
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TestREx: a testbed for repeatable exploits
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