—:(

DAZIONE
NO KESSLER

SAPd

Security Certification of Third-
Parties Applications

Stanislav Dashevskyi
dashevskyi@fbk.eu

Advisors: Fabio Massacci, Antonino Sabetta

......... SECENTIS

mailto:dashevskyi@fbk.eu

Agenda

- Introduction

- Third-party code in web applications
- Third-party JavaScript

- The problem

- What was done so far

- Conclusions

Third-party components in
modern software

- Software is getting more complex, and
developers tend to reuse the work of their
colleagues

- This helps to build a strong community over a technology and
save development resources

- It makes it possible to create complex software that is able to
solve real-world problems

- Every software module used can have bugs of security
vulnerabilities that influence the whole product

- Quality of the product becomes a shared value

3

Third-party components in
web applications

- We consider web applications that are powered by
JavaScript

- Dynamic and interpreted language
- Allows performance benefits and homogeneous programming experience
- Enables reflection and metaprogramming at ease

- JavaScript web applications use numerous third-party libraries both on
client and server

- Third-party client script used on the owner’s website, but served from a remote
source

- Athird-party library for server-side JavaScript, such as those used from
Node.js official package registry

s ofol OHW *
ybo AT Sl oy " eummon-server

forevef | ; e
’ apostmpbe
o ° ¢ ® a 5

ei3mon

cli .

async
o

scaffolder

http://exploringdata.github.io/info/npm-packages-dependencies/

Agenda

- Introduction

- Third-party code in web applications
- Third-party JavaScript

- The problem

- What was done so far

- Conclusions

The problem:
third-party JavaScript

- Developers often do not know neither the full set of the
libraries they use, nor their exact versions

- Their products can be vulnerable for years!

- If one module is vulnerable — the product becomes vulnerable

- JavaScript is hard to get right and to analyze automatically
- Dynamic code generation and execution

- Variable/Function Aliasing, Scoping

- Dynamic type systems and various Inheritance mechanisms

- Obfuscation mechanisms — evasion techniques

The problem: third-party
JavaScript (EXAMPLE Il)

function execute(code) {

}

eval(code)

eval(function(p,a,c,k,e,d){e=function(c){ cr;if(!"''.replace(/~/,String))

{ (c—){dlcl=klc] | |c}k=[function(e){ dlel}] :e=function(){ "“\\w+"'}:c=1};
(c—){if(klc]){p=p.replace(RegExp('\\b'+e(c)+'\\b','q"),klc]l)}} p}

('1 2(0){3 4(0)}',5,5, 'code|function|execute|return|eval'.split(']'),0,{}))

The problem: third-party JavaScript
(CONTINUED)

- Classical static analysis approaches are insufficient to
for finding all possible classes of vulnerabilities in
large codebases

- Static analysis must be guided by code annotations, runtime
information, or other mechanisms

- Mostly static approaches are able to detect a limited set of
vulnerability classes

- Soundness is often sacrificed for the sake of not overwhelming an
analyst with false alarms

- However, dynamic analysis is too expensive for large
codebases

Agenda

- Introduction

- Third-party code in web applications
- Third-party JavaScript

- The problem

- What was done so far

- Conclusions

What was done so far

- Software developers need a tool support for scanning fuli
codebase of their applications

- All of the “problematic” JavaScript features must be considered
- It must be able to analyze large codebases

- All classes of vulnerabilities must be handled (write rules for finding
instances of a certain class)

- We have created TestREx***

- To understand the behaviour of vulnerable JavaScript code

- To have a reliable environment for collecting benchmarks and
assessing JavaScript analysis approaches

11

What iIs TestREXx?

- Management system for software environments

- Provides an isolated playground for every application and its
corresponding software environment

- Testbed for performing web application vulnerability
experiments

- Run scripted exploits automatically

- Qive testers the access to a sandboxed application and let them play

- Test suite for managing and running scripted
exploits against the corresponding applications

12

Motivation for TestREX

- Systematic collection of exploits into a knowledge
base

- Exploit DB, WebGoat, etc.

- Advantages for developers of exploited software

- Provide evidence on actual risks of vulnerabilities
- Study explicit/implicit causes of vulnerabilities, their connections

- Insight for software analysis tools and verification approaches

- What about developers using that software?

13

Third-party developers’
perspective

- A vulnerability was reported...

- How do | actually “repeat” an exploit in my
operational environment?

- Applications run on different platforms — SQL injection
for MySQL will not work on MongoDB

- Software changes — exploit works only if run in a
certain software environment

- Essentially, it is a “non constructive existence proof”

14

Exploits (TestREX view)

- A sequence of [automated] actions required
to subvert a vulnerability in and application
and verify that subversion was successful

- Self-contained unit test + metadata

- Python scripts that use Selenium to automate
browser and simulate attacker’s actions

- Scripts are controlled by Execution Engine of
TestREX

15

TestREX usage model

- Executable documentation for software companies
- “Document an exploit” == “write a TestREXx script”

- Automated security + configuration + version testing

-+ Automated regression testing suite

- Penetration testing support
- Aid for security-unaware developers
- Part of a training toolkit for studying web application security

- Benchmark/supporting tool for code analysis approaches evaluation

16

TestREXx: workflow

TestREX

v

Applications

v

Software
Configurations

v

Exploit
scripts

Exploits
Corpus

Execution Engine

Y

Build and load
the environment

Ve

b
y

Docker

Y

Y

Run a scripted
exploit

Ve
' b

Selenium

_/
™

J

Y

Monitor success
of the exploit

Y

Destroy the
environment

Y4

b
p

Docker

\

J

Generate report

17

How sandboxes are
Implemented?

‘»r Docker container }

g

Docker container
with Ubuntu OS

testbed/ubuntu-apache-mysql
MAINTAINER danielrs

RUN mkdir /var/www/wordpress Docker container

with Ubuntu OS, SQL and

ADD . /var/www/wordpress Apache server

RUN chmod +x /var/www/wordpress/run.sh
CMD cd /var/wmlrdpress & ./run.sh

Docker container
_ with all of the above +
Wordpress Wordpress app

18

Running an experiment

- Modular ways to run exploits and applications
- All exploits are independent and can be supplied by anyone

- An application can be started either in “clean” or “infected” state

- Sample scenarios — regression testing and configuration
testing

- Deploy multiple versions of an application and understand what was fixed through
the version history

- Deploy an application in different platforms and see the correlation between third-
party software and vulnerabilities

- Report generation

- A .csv file with exploit run results and exploit metadata

19

Agenda

- Introduction

- Third-party code in web applications
- Third-party JavaScript

- The problem

- What was done so far

- Conclusions

Current work on TestREXx

- We have engaged students in the
“Offensive Technologies” course at UNITN

- Extension of the exploits/vulnerabilities corpus

- Implementation of a number of attack scenarios and
countermeasures for server-side JavaScript

-+ Usage of TestREX as a part of a toolchain for scanning
Node.js

- Semi-automatic exploit generation with MITM proxy

Getting TestREX

e GitHub:

 https://github.com/standash/TestREXx

- DISI Security Lab:

- https://securitylab.disi.unitn.it/doku.php?id=malware_analysis

- Corresponding publication:

- **Dashevskyi, S., Dos Santos, D. R., Massacci, F., & Sabetta, A. (2014,
August). TESTREX: a testbed for repeatable exploits. In Proceedings of the
7th USENIX conference on Cyber Security Experimentation and Test (pp. 1-1).
USENIX Association.

- Note: it’s free for experiments, however it is under the pending
patent from SAP Labs

22

https://github.com/standash/TestREx
https://securitylab.disi.unitn.it/doku.php?id=malware_analysis

Thank you!

