
Security Certification of Third-
Parties Applications

Stanislav Dashevskyi
dashevskyi@fbk.eu

Advisors: Fabio Massacci, Antonino Sabetta

mailto:dashevskyi@fbk.eu

Agenda
• Introduction

• Third-party code in web applications

• Third-party JavaScript

• The problem

• What was done so far

• Conclusions

Third-party components in
modern software

• Software is getting more complex, and
developers tend to reuse the work of their
colleagues

• This helps to build a strong community over a technology and
save development resources

• It makes it possible to create complex software that is able to
solve real-world problems

• Every software module used can have bugs of security
vulnerabilities that influence the whole product

• Quality of the product becomes a shared value

3

Third-party components in
web applications

• We consider web applications that are powered by
JavaScript

• Dynamic and interpreted language

• Allows performance benefits and homogeneous programming experience

• Enables reflection and metaprogramming at ease

• JavaScript web applications use numerous third-party libraries both on
client and server

• Third-party client script used on the owner’s website, but served from a remote
source

• A third-party library for server-side JavaScript, such as those used from
Node.js official package registry

4

Third-party modules:
Node.js example

The following images are taken from
http://exploringdata.github.io/info/npm-packages-dependencies/

5

http://exploringdata.github.io/info/npm-packages-dependencies/

Agenda
• Introduction

• Third-party code in web applications

• Third-party JavaScript

• The problem

• What was done so far

• Conclusions

The problem:
third-party JavaScript

• Developers often do not know neither the full set of the
libraries they use, nor their exact versions

• Their products can be vulnerable for years!

• If one module is vulnerable ➝ the product becomes vulnerable

• JavaScript is hard to get right and to analyze automatically

• Dynamic code generation and execution

• Variable/Function Aliasing, Scoping

• Dynamic type systems and various Inheritance mechanisms

• Obfuscation mechanisms ➝ evasion techniques

7

The problem: third-party
JavaScript (EXAMPLE II)

8

The problem: third-party JavaScript
(CONTINUED)

• Classical static analysis approaches are insufficient to
for finding all possible classes of vulnerabilities in
large codebases

• Static analysis must be guided by code annotations, runtime
information, or other mechanisms

• Mostly static approaches are able to detect a limited set of
vulnerability classes

• Soundness is often sacrificed for the sake of not overwhelming an
analyst with false alarms

• However, dynamic analysis is too expensive for large
codebases

9

Agenda
• Introduction

• Third-party code in web applications

• Third-party JavaScript

• The problem

• What was done so far

• Conclusions

What was done so far
• Software developers need a tool support for scanning full

codebase of their applications

• All of the “problematic” JavaScript features must be considered

• It must be able to analyze large codebases

• All classes of vulnerabilities must be handled (write rules for finding
instances of a certain class)

• We have created TestREx***

• To understand the behaviour of vulnerable JavaScript code

• To have a reliable environment for collecting benchmarks and
assessing JavaScript analysis approaches

11

What is TestREx?
• Management system for software environments

• Provides an isolated playground for every application and its
corresponding software environment

• Testbed for performing web application vulnerability
experiments

• Run scripted exploits automatically

• Give testers the access to a sandboxed application and let them play

• Test suite for managing and running scripted
exploits against the corresponding applications

12

Motivation for TestREx
• Systematic collection of exploits into a knowledge

base

• Exploit DB, WebGoat, etc.

• Advantages for developers of exploited software

• Provide evidence on actual risks of vulnerabilities

• Study explicit/implicit causes of vulnerabilities, their connections

• Insight for software analysis tools and verification approaches

• What about developers using that software?

13

Third-party developers’
perspective

• A vulnerability was reported…

• How do I actually “repeat” an exploit in my
operational environment?

• Applications run on different platforms ➝ SQL injection
for MySQL will not work on MongoDB

• Software changes ➝ exploit works only if run in a
certain software environment

• Essentially, it is a “non constructive existence proof”

14

Exploits (TestREx view)
• A sequence of [automated] actions required

to subvert a vulnerability in and application
and verify that subversion was successful

• Self-contained unit test + metadata

• Python scripts that use Selenium to automate
browser and simulate attacker’s actions

• Scripts are controlled by Execution Engine of
TestREx

15

TestREx usage model
• Executable documentation for software companies

• “Document an exploit” == “write a TestREx script”

• Automated security + configuration + version testing

• Automated regression testing suite

• Penetration testing support

• Aid for security-unaware developers

• Part of a training toolkit for studying web application security

• Benchmark/supporting tool for code analysis approaches evaluation

16

TestREx: workflow

17

How sandboxes are
implemented?

Docker container
with Ubuntu OS

Docker container
with Ubuntu OS, SQL and

Apache server

Docker container
with all of the above +

Wordpress app

18

Running an experiment
• Modular ways to run exploits and applications

• All exploits are independent and can be supplied by anyone

• An application can be started either in “clean” or “infected” state

• Sample scenarios ➝ regression testing and configuration
testing

• Deploy multiple versions of an application and understand what was fixed through
the version history

• Deploy an application in different platforms and see the correlation between third-
party software and vulnerabilities

• Report generation

• A .csv file with exploit run results and exploit metadata

19

Agenda
• Introduction

• Third-party code in web applications

• Third-party JavaScript

• The problem

• What was done so far

• Conclusions

Current work on TestREx
• We have engaged students in the

“Offensive Technologies” course at UNITN

• Extension of the exploits/vulnerabilities corpus

• Implementation of a number of attack scenarios and
countermeasures for server-side JavaScript

• Usage of TestREx as a part of a toolchain for scanning
Node.js

• Semi-automatic exploit generation with MITM proxy

Getting TestREx
• GitHub:

• https://github.com/standash/TestREx

• DISI Security Lab:

• https://securitylab.disi.unitn.it/doku.php?id=malware_analysis

• Corresponding publication:

• ***Dashevskyi, S., Dos Santos, D. R., Massacci, F., & Sabetta, A. (2014,
August). TESTREX: a testbed for repeatable exploits. In Proceedings of the
7th USENIX conference on Cyber Security Experimentation and Test (pp. 1-1).
USENIX Association.

• Note: it’s free for experiments, however it is under the pending
patent from SAP Labs

22

https://github.com/standash/TestREx
https://securitylab.disi.unitn.it/doku.php?id=malware_analysis

Thank you!

