

Performance Evaluation of Self-Sovereign Identity (SSI)

Emin Adem Buran^{1,2},

Christian Prehofer^{2,1*}

Srivatsav Chenna^{2,1}

¹ Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany ² DENSO AUTOMOTIVE Deutschland GmbH, Eching, Germany

Objective

- Self-sovereign, decentral Identity (SSI)
 - W3C standard for DID identity documents
 - Wallets with private keys
 - Separate issuer and verifier(s)
 - Rely on verifiable data registries
- Performance of SSI on Raspb. Pi 4 and x86
 - Latency
 - Memory and CPU usage
 - Scalability
- Considered DID methods:
 - CHEQD: Blockchain based trust anchor
 - KEY, WEB, JWK: local or web-based (TLS certificates) trust anchor

SSI Tool Kit: Walt.id

- An open source identity & wallet infrastructure
- Issuance, verification, and management of verifiable credentials
 - Verifiable credentials (VC) according to W3C Data Model
- Supported DID methods : KEY, JWK, WEB, CHEQD

Experimental Setup

• A Raspberry Pi 4 and a x86 PC

Raspberry Pi 4	X86 PC
Quad-core CPU (1.8 GHz max)	Quad-core CPU (3.4 GHz max)
8GB of memory	16GB of memory
Ubuntu Core 24	Ubuntu 22.04.3 LTS

- Connected to the internet via a DSL connection
- Walt.id identity repository version 0.3.1
- Python scripts to automate interactions with the Issuer, Verifier, and the Wallet services

Performance Measurements

- Latency Measurements for CHEQD, WEB, KEY, JWK
 - VC issuance and VC verification separately
 - Repeated 50 times

Performance Measurement (1)

- 1. CHEQD DID Method Latency
 - Issuance and verification times are significantly higher for the CHEQD DID
 - DID document resolution with the Universal DID Resolver
 - Includes public keys in Blockchain

Performance Measurement (2)

2. Raspberry Pivs. PC

- For other DID methods (WEB, JWK, and KEY), latency on the Raspberry Pi is approximately twice as high as on the PC.
- Likely due to the CPU performance disparity.

CPU and Memory Usage Measurement

- Two DID methods: KEY and CHEQD
- Measurements were taken over an 80-second interval
 - Load phase is 60 seconds
- Repeated three times

Blue – the first measurement, orange – the second measurement green – the third measurement. The memory is same, single red line.

DID

KEY,

PC

CPU and Memory Usage Measurement (continued)

1. MEMEORY USAGE

• No significant memory usage increase during the 60-second load phase

2. KEY DID METHOD (last slide)

• The PC maintained stable CPU usage with minimal fluctuations

3. CHEQD DID Method

- Both devices showed noticeable CPU usage spikes
- Spikes are linked to the system's interaction with the external Universal Resolver for DID resolution

Scalability Measurements: DID Key

- Raspberry Pi experiences a larger proportional increase in issuer response time
- The proportional increase in verification response time is similar between them
 - Two different DID methods: CHEQD and KEY
 - Number of concurrent users from 1 to 40
 - Repeated 10 times

Scalability Measurements: DID CHEQD

- CHEQD DID method similar scaling behavior for both devices.
- External DID resolution process dominates latency
 - diminishing the relative impact of hardware differences on performance.

Conclusions

- Issuance and verification significantly slower for CHEQD
 - Due to universal resolver and blockchain access
 - Related work similarly shows 1-3s latency
- PC and Raspberry Pi perform well for SSI
 - PC performance more stable in some cases
 - Higher scalability of PC for load scenarios (factor 2)
- Little difference from Ubuntu vs Ubuntu Core

Thank you for listening!