
GAIN Activity Report
Exploring Technical Feasibility for Inter-Ecosystem Interoperability

TDI 2024 on April 9th, 2024
Takahiko Kawasaki

Co-Founder of Authlete, Inc.

https://gainforum.org/GAINWhitePaper.pdf

GAIN
Global Assured Identity Network

GAIN (Global	Assured	Identity	Network)	
is	a	project	to	build	a	high-trust	digital	
identity	network	over	the	Internet.

GAIN	DIGITAL	TRUST,	the	white	paper	
of	the	project,	was	co-authored	by	over	
150	professionals	in	related	fields	and	
published	on	September	13,	2021.

GAIN	PoC	Community	Group	was	formed	
to	research	GAIN's	technical	feasibility.

https://gainforum.org/GAINWhitePaper.pdf

Current Ecosystem Architecture

Current Ecosystem Architecture (1/4)
The	open	banking	movement	in	the	
United	Kingdom	has	spread	to	countries	
around	the	world.

Each	country	has	built	their ecosystems	
where	multiple	services and	multiple	
applications connect	with	each	other.

The	services	and	applications	have	
implemented	authorization	servers	and	
OAuth	clients	respectively.	Their	technical	
details	are	defined	in	standards	related	to	
OAuth	2.0	and	OpenID	Connect.

United Kingdom
Open Banking

Australia
CDR

Brazil
Open Finance

Saudi Arabia
Open Banking

Current Ecosystem Architecture (2/4)
In	a	typical	implementation,	an	OAuth	client	belongs	to	one	authorization	
server	at	a	time.	An	authorization	server	and	an	OAuth	client	that	do	not	
have	such	a	relationship	cannot	communicate	with	each	other.

Therefore,	if	an	application	
wants	to	communicate	with	
multiple	services,	the	
application	has	to	establish	
a	relationship	with	each	
service's	authorization	
server	one	by	one.

service
authorization server

service
authorization server

service
authorization server

application
OAuth client

OAuth client

application
OAuth client

OAuth client

Current Ecosystem Architecture (3/4)
To	establish	the	relationship,	an	application	registers	itself	to	each	
authorization	server	by	using	the	mechanism	called	dynamic	client	
registration.

service
authorization server

application
OAuth client

dynamic client
registration endpoint

client metadata
client metadata + client identifier client identifier

service
authorization server OAuth client

dynamic client
registration endpoint

client metadata
client metadata + client identifier client identifier

Current Ecosystem Architecture (4/4)
To	prevent	unauthorized	parties	from	registering	
clients,	real-world	deployments	employ	some	
countermeasures.

An	example	is	to	require	that	a	dynamic	client	
registration	request	contain	a	software	statement	
which	has	been	issued	by	a	central	authority.

service
authorization server

application
OAuth client

dynamic client
registration endpoint

client metadata + software stmt
client metadata + client identifier client identifier

central
authority

software
statememt

issue

TPP

Open Banking Directory
Key Pair

Software Statement

client info signature

client infoGenerate a software
statement by signing
the client info with
the private key.

private keysign

Software Statement Issue API JWK Set Endpoint

JWK Set Document including
the public key

①

②

③

Authorization Server

Receive a software
statement.

Request a software
statement.

Client Registration Endpoint

Software Statement
client info signature

{ "keys": [

.....,

]}
public key

public key

public key
Software Statement
client info signature

verify

⑤ ⑥
Receive the JWK
Set Document.

Request the JWK
Set Document.

Send a DCR request with the
software statement with other
client metadata.

④

⑦

Design Considerations

Design Considerations

Trust	between	applications	and	services	in	different	ecosystems	
should	be	able	to	be	established	without	needing	a	single	central	
authority.

An	application	should	be	able	to	use	the	same	client	identifier	
across	different	services.

It	should	be	ensured	that	user	claims	(such	as	family	name	and	
date	of	birth)	have	been	obtained	through	KYC	processes.

Decentralized	Trust

Globally-Unique	Client	Identifiers

KYC

Adopted Standard Specifications

Adopted Standard Specifications

• OpenID	Federation 1.0
• OpenID Connect	for	Identity	Assurance	1.0	(OIDC4IDA)

• OpenID	for	Verifiable	Credential Issuance	(OID4VCI)
• SD-JWT-based	Verifiable	Credentials	(SD-JWT	VC)

GAIN	POC	Phase	1 – Done🎉

GAIN	POC	Phase	2	– Ongoing	(almost	done)

Independent	implementations	in	Italy🇮🇹,	Germany🇩🇪 and	Japan🇯🇵
could	communicate	with	each	other	using	OpenID	Federation	1.0.

In	practice,	this	is	an	interoperability	event	of	Digital	Identity	Wallet.

Relying Party A-1

Relying Party A-2

Relying Party A-3

Identity Provider A

under management
(direct relationship)

Relying Party B-1

Relying Party B-2

Relying Party B-3

Identity Provider B

under management
(direct relationship)

Intermediate
Authority A

Trust Anchor A

trust

relationship established based on trust chains

OpenID Federation 1.0

Trust Anchor B

Intermediate
Authority B

authorize authorize

authorize

trust

authorize

TRUST CHAIN

TRUST CHAIN

OIDC4IDA	defines	a	mechanism	to	transmit	user	claims	that	have	been	
verified	by	official	evidence	such	as	passport	and	driver's	license.

Image from https://openid.net/wg/ekyc-ida/

Information	related	to	
verified	user	claims	is	
all	put	under	the	
verified_claims claim	
embedded	in	ID	tokens	
and/or	userinfo	
responses.

OpenID Connect for Identity Assurance 1.0 (OIDC4IDA)

https://openid.net/wg/ekyc-ida/

Wallet Credential
Issuer

Authorization
Server

Verifiable
Credential

issue

Access
Token

issue

present
Credential
Endpoint

OpenID for Verifiable Credential Issuance (OID4VCI)

Pre-Authorized Code Flow
(w/o deferred issuance)

issue
Credential Offer
Pre-Authorized

Code

Token
Endpoint

present

SD-JWT
Selective Disclosure for JWT

Wallet Credential
Issuer

Verifer

priv key
pub key

VC

birthdate
address

name

signature

VP

sign

VC

birthdate
address

name

signature

VP

birthdate
name

signature

pub key

verify

birthdate
name

fail

signature

HEADER

{
"name1": "value1",
"name2": "value2",

...

}

SIGNATURE

[]"name1","value1""salt1",

SD-JWT

{
"name1": "value1",
"name2": "value2",

...

}

HEADER

SIGNATURE

[]"name1","value1""salt1",
base64url

Disclosure1

{
"_sd": [

],
...

}

Digest1 hash ["salt2","name2","value2"]

Digest2 hash base64url

Disclosure2

~ ~ ~

private
key

public
key

key	pair
public	key

Disclosure2Disclosure1Issuer-signed	JWT Key	Binding	JWT

sign

(optional)

Issuer-signed	JWT Key	Binding	JWT~ ~ ~
SD-JWT

{
"name1": "value1",
"name2": "value2",

...
}

Disclosure1 Disclosure2

Issuer-signed	JWT Key	Binding	JWT~ ~
SD-JWT

Disclosure1

{
"name1": "value1",
...

}

Thank You
www.authlete.com
info@authlete.com
Palo Alto, Tokyo, Dubai

