
Attribute-Based

Encryption

for Access Control

in (Real World)

Cloud Ecosystems

Giovanni Bartolomeo

CNIT

(giovanni.bartolomeo AT uniroma2.it)

Good Morning!

1. About myself:
https://www.linkedin.com/in/giovannibartolomeo/

2. About CNIT: https://www.cnit.it/

3. Some resources about this work:

https://github.com/netgroup/abe4jwt

https://www.linkedin.com/in/giovannibartolomeo/
https://www.cnit.it/
https://github.com/netgroup/abe4jwt

Why this work?

1. Today, OAuth2/OpenID Connect 1.0 is the most common auth mechanism on

the web, just after static username/password auth

2. Broken Access Control is OSWAP#1 Application Security Risk in 2021

3. OAuth2 specs increasing their complexity as soon as new vulnerabilities are

found

4. Using predicate encryption instead of traditional token signature we can

achieve a simpler and more effective design

1 OpenID: Implict Grant & Authorization Code Flow 2 3 4 5

The ideal Oauth
flow (Implicit
Grant).

Interesting part of
the protocol under
investigation is the
authz req and res,
which happens
through http GET
cross site/server
side requests.

Implicit is
unsecure as
parameters are
carried en clair as
URL in the authz
req/res.

1 OpenID: Implict Grant & Authorization Code Flow 2 3 4 5

Here is a real-
world
implementation of
OAuth2.0 as
OpenID Connect
1.0 Authorization
Code flow using
Json Web Tokens.

Instead of a token,
the authz res
returns a code
which is later
exchanged for a
token at the token
endpoint.

Several
vulnerabilities
related to
code/parameter
injections.

1 OpenID: Implict Grant & Authorization Code Flow 2 3 4 5

We investigated
OIDC formal
correctness of
Authz Code Flow
using Opensource
Fixedpoint Model
Checker [1]

1. S. Mödersheim. Algebraic properties in Alice and Bob notation. In International Conference on Availability, Reliability and Security (ARES 2009), pages
433–440, 2009.

2. D. Fett, R. Küsters, and G. Schmitz: The web sso standard OpenID Connect: In-depth formal security analysis and security guidelines. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pp. 189–202, Aug 2017.

Dolev-Yao style model, indeed, much less comprehensive than Fett, Küsters,
and Schmitz's [2]:

- use a fixed AS
- does not model end user interface (Login&Consent not modeled)
- does not capture web specific attacks
- does not provide native support for strong Client authentication (just

Client's username/pw)

Investigation under various initial conditions:
- Original Authentication Code Grant Flow
- A nonce is returned in the token
- RFC 7636 Proof Key for Code Exchange (PKCE) for OAuth2.0
- Request object signature
- Demonstrating Proof of Possession (draft-ietf-oauth-dpop-04)

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

Our model
Attempt #1
(Nonce is not
returned in the
token)

Results…
Attacker may
impersonate AS
and return (inject)
a (previously
obtained) wrong
code to the Client

Actions:

C ->RS : Scope

RS* ->C : Scope,as,Session

[C] ->as : RS,Scope,State,Nonce #authz req

as ->[C] : State,code(Scope,State,Nonce),Scope #authz res

[C]*->*as : C,pw(as,C),code(Scope,State,Nonce)

as* ->*[C]: {resource(code(Scope,State,Nonce)),

C,as,RS)}inv(pk(as)),#this is the access token

code(Scope,State,Nonce)

[C]*->*RS : {resource(code(Scope,State,Nonce)),C,as,RS}inv(pk(as)),Session

RS* ->*[C]: Data,Session

Goals:

RS authenticates C on RS,resource(code(Scope,State,Nonce)),C,as,Session

C authenticates RS on Data

Data secret between RS,C

C authenticates as on State,Scope,code(Scope,State,Nonce) #may be violated by

injection!

as weakly authenticates C on C,pw(as,C),code(Scope,State,Nonce) #confidential Client

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

https://github.com/netgroup/abe4jwt/blob/master/AnB/00%20Auth_Code_noPKCE_noNonce_flawed.AnB

Our model
Attempt #2 (with
Nonce)

Results…
Without
protecting →
injection of
parameters into
the authz req,
wrong token
returned.
Protecting:
Only the authz req
→ code injection
Only the authz res
→ DoS by Nonce
injection
(detectable if the
Client checks Nonce
in the returned
token).

Actions:

C ->RS : Scope

RS* ->C : Scope,as,Session

[C] ->as : RS,Scope,State,Nonce

as ->[C] : State,code(Scope,State,Nonce),Scope

[C]*->*as : C,pw(as,C),code(Scope,State,Nonce)

as* ->*[C]: {resource(code(Scope,State,Nonce)),

C,as,RS,Nonce)}inv(pk(as)),#returned access token now includes a nonce

code(Scope,State,Nonce)

[C]*->*RS : {resource(code(Scope,State,Nonce)),C,as,RS,Nonce}inv(pk(as)),Session

RS* ->*[C]: Data,Session

Goals:

RS authenticates C on RS,resource(code(Scope,State,Nonce)),C,as,Session

C authenticates RS on Data

Data secret between RS,C

C authenticates as on State,Scope,code(Scope,State,Nonce)

as weakly authenticates C on C,pw(as,C),code(Scope,State,Nonce)

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

https://github.com/netgroup/abe4jwt/blob/master/AnB/01%20Auth_Code_noPKCE_Nonce_unprotected_flawed.AnB

Our model
Attempt #3 (RFC
7636 PKCE is
inroduced)

Results…
Not protecting
messages: attacker
may alter the
parameters in
authz req but
presents the
correct PKCE
Challenge to
obtaing a wrong
code, which is
injected in the
flow and later
exchanged for a
(wrong) token by
the Client.

Actions:

C ->RS : Scope

RS* ->C : Scope,as,Session

[C] ->as : RS,Scope,State,Nonce,hash(Verifier) #PKCE Challenge

as ->[C] : State,code(Scope,State,Nonce,hash(Verifier)),Scope #code "embeds" PKCE

[C]*->*as : C,pw(as,C),code(Scope,State,Nonce,hash(Verifier)),Verifier #PKCE Verifier

as* ->*[C]: {resource(code(Scope,State,Nonce,hash(Verifier))),C,as,RS)}inv(pk(as)),

Verifier

[C]*->*RS : {resource(code(Scope,State,Nonce,hash(Verifier))),C,as,RS}inv(pk(as)),

Session

RS* ->*[C]: Data,Session

Goals:

RS authenticates C on RS,resource(code(Scope,State,Nonce,hash(Verifier))),C,as,

Session

C authenticates RS on Data

Data secret between RS,C

C authenticates as on State,Scope,code(Scope,State,Nonce,hash(Verifier))

as weakly authenticates C on C,pw(as,C),code(Scope,State,Nonce,hash(Verifier)),

Verifier

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

https://github.com/netgroup/abe4jwt/blob/master/AnB/03%20Auth_Code_PKCE_noNonce_unprotected_flawed.AnB

Our model
Attempt #4 (RFC
7636 PKCE +
signing authz req)

Results…
Simply providing
authenticity of the
authz req – even
without
encrypting its
content – finally
results in a safe
flow!

Protecting authz
res only works
too.

Actions:

C ->RS : Scope

RS* ->C : Scope,as,Session

C* ->as : RS,Scope,State,Nonce,hash(Verifier) #PKCE Challenge + req signature

as ->C : State,code(Scope,State,Nonce,hash(Verifier)),Scope #code "embeds" PKCE

[C]*->*as : C,pw(as,C),code(Scope,State,Nonce,hash(Verifier)),Verifier #PKCE Verifier

as* ->*[C]: {resource(code(Scope,State,Nonce,hash(Verifier))),C,as,RS) }inv(pk(as)),

Verifier

[C]*->*RS : {resource(code(Scope,State,Nonce,hash(Verifier))),C,as,RS}inv(pk(as)),

Session

RS* ->*[C]: Data,Session

Goals:

RS authenticates C on RS,resource(code(Scope,State,Nonce),hash(Verifier)),C,as,

Session

C authenticates RS on Data

Data secret between RS,C

C authenticates as on State,Scope,code(Scope,State,Nonce,hash(Verifier))

as weakly authenticates C on C,pw(as,C),code(Scope,State,Nonce,hash(Verifier)),

Verifier

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

https://github.com/netgroup/abe4jwt/blob/master/AnB/04%20Auth_Code_PKCE_noNonce_req_protected_OK.AnB

Our model
Modelling sender-
constrained token.

Several proposed
approaches (see
draft-ietf-oauth-
security-topics)

We investigated
DPoP (popular
draft)

Results…

Safe if DPoP sign
is over sufficient
parameters (at
least pk(C), RS,
Scope) to avoid
reply attacks.

Actions:

C ->RS : Scope

RS* ->C : Scope,as,Session

[C]*->*as : RS,Scope,State,Nonce,hash(Verifier)

as ->[C] : State,code(Scope,State,Nonce,hash(Verifier)),Scope

[C]*->*as : C,pw(as,C),code(Scope,State,Nonce,hash(Verifier)),Verifier,

{pk(C)}inv(pk(C)) #Self signed DPoP pk(C)

as*->[C] : #Token returned en clair to investigate token leakage effects…

{resource(code(Scope,State,Nonce,hash(Verifier))),

C,as,RS,Nonce,pk(C)}inv(pk(as)),

code(Scope,State,Nonce,hash(Verifier))

[C]*->*RS : {resource(code(Scope,State,Nonce,hash(Verifier))),C,as,

RS,Nonce,pk(C)}inv(pk(as)),Session,

{ath(resource(code(Scope,State,Nonce,hash(Verifier))),C,as,

RS,Nonce,pk(C)),RS,Scope}inv(pk(C)) #This is the DPop proof

RS* ->*[C]: Data,Session

Goals:

RS authenticates C on RS,resource(code(Scope,State,Nonce),hash(Verifier)),C,as,Session

C authenticates RS on Data

Data secret between RS,C

C authenticates as on State,Scope,code(Scope,State,Nonce,hash(Verifier))

as weakly authenticates C on C,pw(as,C),code(Scope,State,Nonce,hash(Verifier)),Verifier

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

https://github.com/netgroup/abe4jwt/blob/master/AnB/05%20Auth_Code_PKCE_DPOPv4_OK.AnB

INTROSPECTION

ENDPOINT

TOKEN

ENDPOINT

RESOURCE SERVER

CLIENT

AUTH

ENDPOINT

So what?

While the Client
knows in advance
the Nonce, but has
no information on
which resources the
user has authorized
access to, the
Resource Server
does not know none
of these, even if this
information is
written in the token.
The whole system
trust relies on the
token signature
(sometimes
introspection
endpoint is used).

A distributed session
across C, AS, RS?

JWT={"iss":"https://acc.example.com",
"client_id":"1234987819200.apps",
"aud":"https://app.example.com",
"sub":"jsmith@example.com",
"scope":"openid email country",
"iat":1353601926,
"nbf":1353601926,
"exp":1353604926,
“nonce”:0394852-3190485-2490358,
…}

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

ACP

Modern crypto
may come into
help…

1. A. Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 47–53.
Springer-Verlag New York, Inc., 1984.

2. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457-473, 2005.
3. V. Goyal, O. Pandey, A. Sahai, B. Waters: "Attribute-based encryption for fine-grained access control of encrypted data", Proceedings of the 13th

ACM Conference on Computer and Communications Security, CCS '06, pages 8-98, New York, NY, USA, 2006. ACM.
4. J. Bethencourt, A. Sahai, B. Waters: "Ciphertext-policy attribute-based en-cryption", Proceedings of the 2007 IEEE Symposium on Security and

Privacy, SP'07, pages 32-334. Washington, DC, USA, IEEE Computer Society.

Public Key Crypto Identity-Based Encryption[1] Attribute-Based Encryption[2-4]

z={x} pk(a)

x={z}-1
sk(a)

Solves key-distribution
problem (pk is publicly
available)

z={x}mpk,"receiver"

x={z}-1
mpk,sk("receiver")

Many randomized secrets keys
for one set of MPK, MSK

Public keys "replaced" by plain
strings

A KMS distributes MPK and
generates secret keys

z={x}mpk,(aꓥb)ꓦc

x={z}-1
mpk,sk({a,b})

Combines IBE with SSS [2] and
monotonic span trees [3,4]

A fine-granuled content access
policy implemented in crypto!

Many other math properties…

1 2 3 Present ABE and show its application to OIDC 4 5

Our proposed
flow is a slightly
modified
implementation of
OpenID Connect
1.0 Implicit Grant
plus an HTTP

challenge-
response
authentication

→

Problems 1, 2 and
3 wholly solved by
crypto

Challenge:

{{𝑥}𝑀𝑃𝐾,ℎ}𝑀𝑃𝐾,"𝑐𝑙𝑖𝑒𝑛𝑡_𝑖𝑑"

Where

h = iss ꓥ client_id ꓥ aud
ꓥ user ꓥ scope
ꓥ (t<exp)

Same Access Control
Policy as in a JWT:

1 2 3 Present ABE and show its application to OIDC 4 5

JWT={"iss":"https://acc.example.com",
"client_id":"1234987819200.apps",
"aud":"https://app.example.com",
"sub":"jsmith@example.com",
"scope":"openid email country",
"iat":1353601926,
"nbf":1353601926,
"exp":1353604926,
“nonce”:0394852-3190485-2490358,
…}

Actions:

C ->RS : Scope

RS* ->C : as,{{Challenge}h(C,as,RS,Scope)}pk(C) #401 Unauthorized

C ->as : C,RS,Scope,Nonce

as ->C : {inv(h(C,as,RS,Scope)),Nonce}pk(C) #JWT containing an ephemeral key and a

Nonce encrypted to C

[C]*->*RS : Scope,Challenge,Session

RS* ->*[C]: Data,Session

Goals:

C authenticates as on C,RS,Scope,Nonce #Nonce avoids reply attacks

RS authenticates C on Challenge

C authenticates RS on Data

Data secret between RS,C

Simpler and effective
design, leveraging
on e2e encryption

Straightforward to
implement

Less certification
costs

Access control
decision enforced by
math, not by code

Protocol proves to
be formally correct
with respect to the
original goals

1 2 3 Present ABE and show its application to OIDC 4 5

1 2 3 Present ABE and show its application to OIDC 4 5

Zero Knowledge
using ABE
challenge
/response

A single ephKey
may contain
several
attributes… →

BUT

…policy can be
shaped to
minimize the
needed
knowledge →

Wallet

Issuer

Verifier

Subject.age > 18 y.o.
Subject.Country in {Austria, Belgium, …,

Italy, …, Sweden}

Subject.name : Mario Rossi
Subject.age : 31 y.o.
Subject.Country : Italy

Demo Time…

ABE4JWT.NET

Source code on

https://github.com/
netgroup/abe4jwt

1 2 3 4 Demo Time 5

https://github.com/netgroup/abe4jwt

Takeaway

1. Token signature, authorization code, Client's object request signature,
PKCE and DPoP create a distributed session between Client,
Authorization Server and Resource Server.

2. To achieve the same result, using a different design, we leverage on
predicate encryption. ABE generates randomized encryption keys from
a chosen set of attributes and ciphertext from regular expressions over
them.

3. To implement an access decision, tokens based on digital signature
require a coordination of signature verification and software
components. Using ABE policy, the access decision is "automatically"
achieved, by solving a cryptographic challenge.

1 2 3 4 5 Takeaway

Takeaway

4. Existing or ad-hoc invented additional signature schemes are being
progressively introduced in OAuth2/OIDC to fit Zero Knowledge
requirements (essentially to turn a two-party relationship signer/verifier
into a three party one: issuer, prover, verifier).

5. ABE natively implements this three-party relationship: featured with a
native policy definition language, an ABE-based challenge/response
protocol may well support several ZK schemes (incl. not only selective
disclosure of attributes, but also: proof of membership, range proof,
complex predicate proof…)

6. Several features (from biometric authentication to revocation) may be
reliably achieved without changing the schema, just by adding proper
attributes to keys

1 2 3 4 5 Takeaway

More info about
the crypto we
used

→

…but not for this
talk ☺

T H A N K S ! https://www.brighttalk.com/webcast/12761/409316

1 2 3 4 5 Takeaway

https://www.brighttalk.com/webcast/12761/409316

Some Backup Slides…

Signing request

In OIDC, this can be
done using the
Request Object (a
signed JWT passed
in the authz req).

However care must
be taken to not
implement naïve
vulnerabilities.

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

Summarizing… Issue #1
Create a distributed session between C, AS
and RS ensuring the semantics inside a JWT is
commonly understood and correctly enforced

Issue #2
Provide confidentiality in token transmission
(will avoid code4token)

Issue #3
Guarantee Client's proof of possession

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

3. Login &

Consent

1. Request

4. ephKey

2. Challenge

RESOURCE

SERVER

CLIENT

AUTHORIZATION

SERVER + IdP

5. Response

Our proposed
flow is a slightly
modified
implementation of
OpenID Connect
1.0 Implicit Grant
+ HTTP challenge-
response
authentication

→

Problems 1, 2 and
3 wholly solved by
crypto

1 2 3 Present ABE and show its application to OIDC 4 5

ACP

SK = KeyGen(IKM, keyInfo);

PK = SkToPk(SK);

signature = Sign(SK, PK, header, messages);

result = Verify(PK, signature, header, messages);

proof = ProofGen(PK, signature, header, ph, messages,

disclosedIndexes);

result = ProofVerify(PK, proof, messages.length, header, ph,

disclosedMessages, disclosedIndexes);

Zero Knowledge

Need: minimize
disclosed
information to
preserve privacy

An example: BBS+
signature (draft-
looker-cfrg-bbs-
signatures-01, July
2022; based on
Boneh, Boyen and
Shacham, 2004)

→

1 2 3 Present ABE and show its application to OIDC 4 5

Pairing-based ECC signature that signs multiple messages (i.e., claims in a token). The

signature and messages can be used to create signature proofs of knowledge in zero-

knowledge proofs in which the signature is not revealed, and messages can be

selectively disclosed

Suggested use in Oauth2/OIDC: the access token features a BBS signature. The Client

generates a unique proof from the original token and includes the proof in the request

instead of the token ("non-correlating Security Token" – Appendix B.1)

The Resource Server can detect a replay attack by ensuring the proof presented is

unique (Appendix B.2)

A Zero Knowledge schema guarantees that no verifier learns anything other than the fact that a

true statement is true.

//GET MPK

GET https://localhost:9443/as/jwk

AAAAIqpvyjuP8CFnxAvHGt15TwhmtDJleGFtcGxlLm9yZy5tcGsAAAGooQFZsgEEtLIBAAEBzE
ozi7JRPkRz/SO3dy/wO2bnrV0fbtzJvbzzF0jBIU66RtdPAPyPEVQiq8dXRu0t0z4Wxu+cobDH
8yQv1lEUMChNdxNhqeO9FeUhZsC+Jx47IB7Nxy/a7gHSTQI/4xV3VUzjyLAUn9OKMnGCEMBthy
eN29Rkc1dcFUPhKghwA0TR/NBIrH8f1hczg+3p8XtXJM5N+dXGcDmi/F8LhAYKGX69P2EmsIqz
UEf31BuV5s7ITu7V6fvDCzJMHLvIAxx3Wr4Jr1WQundGLoP/1F3qV3f9T0Wv2cNc/CAm82m/EY
RB9TYGczWm5GHo1m1jYisFjLmu7wX1lK2WCiLOb/6hAmcxoSSyoSECIdvwkMTNv6Sq9CqndJwH
3dG0CnnMlKLwdSHARcvB06GhAmcyoUSzoUEDADbOvvphPMbPW56lfUZNbTN0fIKTGFdmCnqii/
wQZ9wV4hgTtFAWMNa1JvfXew0Lu4tnIihXnO5MQ1XMQbnq0qEBa6ElHQAAACC4JZzeAHhPG5Qd
NVu8lFeANvDfgOeh86qUlflF74w/MA==

//REGISTER YOUR OWN SECRET KEY

GET

https://localhost:9443/as/sk?redirect_uri=https://localhost:9543/client/ca

llback&state=14c5ed6e-d184-b1a2-5ad1-af978cf79bcf

//AS will respond you with Client's secret key:

POST https://localhost:9543/client/callback&state=14c5ed6e-d184-b1a2-5ad1-

af978cf79bcf

AAAAGapvylA44LubhSEN523PsjNXSctkZWNLZXkAAADJoRJEXzcxNGEzZGQ4OTMyMGQ0YjGhJL
KhIQMkZM9FrxW0toROc52TDA8jXZ4/YDTnoy3b8jhHOSb2WaESZF83MTRhM2RkODkzMjBkNGIx
oUSzoUECBjGJdYdMhnah/N94MLaixTA058KUNxvSY8butWq+FTUTTK5SlMsfDh2evOytWHXAFq
ptsTOtXiu7jfuwf3q4q6EFaW5wdXShLB0AAAAnY2xpZW50X2lkOmh0dHBzOi8vbG9jYWxob3N0
Ojk1NDMvY2xpZW50

Demo explained...

Once only: set it
up by getting
MPK by the
Authorization
Server.

Then register your
own secret key*.

The AS will post
your secret key →
to your chosen
endpoint
(redirect_uri).

* Slightly more
complex than this in
our implementation.

1 2 3 4 Demo Time 5

https://localhost:9443/as/sk?redirect_uri=https://localhost:9543/client/callback&state=14c5ed6e-d184-b1a2-5ad1-af978cf79bcf
https://localhost:9543/client/callback&state=14c5ed6e-d184-b1a2-5ad1-af978cf79bcf

//Simple REST API

GET https://localhost:8443/blog/get/users/posts/latest/3

[{title:"My first post", text:"Love this one"},

{title:"My Second post", text:"Not so much"},

{title:"My Third post", text:"Definitively hate it"}]

//Try now access to a protected resource

GET

https://localhost:8443/blog/protected/get/users/johndoe@example.com

/profile

//You'll get a challenge:

401 UNAUTHORIZED

WWW-Authenticate: Basic realm =

zoROqb8rcmqGFCG7u481SpodMuslrsgEJo[…]RJDXzcxNGEzZGQ4O_TMyMGQ0YjGhJL

KhIQ[…]MCqHFHX9W5ehsz1d0g9WluUxvsxYk3fKxDuEXlVptuZyXlSMYTZFYlPKwdfP

wLSG8BKOhA19FRKFFHQAAAEBnKeNH1bajqqra3IZhM5HJoBJCnYg7xR1Ho92@localh

ost

Demo.
Resource server
offers publicly
accessible
resources and
private resources.

Access to a private
resource is denied.

But what is this?→

1 2 3 4 Demo Time 5

https://localhost:8443/blog/get/users/posts/latest/3
https://localhost:8443/blog/protected/get/users/pippo@pippo.it/profile

//Authorization Request: redirect to AS for Login & Consent

GET https://localhost:9443/as/authorize

?response_type=code

&client=https://localhost:9543/client

&redirect_uri=https://localhost:9543/client/callback

&audience_uri=https://localhost:8443

&scope=/blog/protected/get/users/{id}/profile

/blog/protected/get/users/{id}/posts

/blog/protected/set/users/{id}/name

/blog/protected/set/users/{id}/country

/blog/protected/add/users/{id}/posts

&state=c42aed6e-dd84-41a2-96d1-1f9c8cf79bcf

&nonce=0394852-3190485-2490358

Demo.
Login and
Consent happens
as in a traditional
OpenIDConnect
flow.

1 2 3 4 Demo Time 5

//Authorization response: AS replies with

https://localhost:9543/client/callback?code=eyJlcobDH8yQv1lEUMChNdxNhqeO9Fe

UhZsC+Jx47IB7Nxy/a7gHSTQI/4xV3VUzjyLAUn9OKMnGCEMBthyeN29Rkc1dcFUPhKghwA0TRN

BIrH8f1hczg+3p8XtXJM5N+dXGcDmi/F8LhAYKGX69P2EmsIqzUEf31BuV5s7ITu7V6fvDCzJMH

LvIAxx3Wr4Jr1WQundGLoP[…]24f8

//"code" is a JWT encrypted to your Client. Decrypt it using your Client's
key:

EncryptedJWT.parse(code).decrypt(new KPABEDecrypter(new

Base64URL(clientKey)))

//After decryption you will discover ephKey (user has authorized 2 of 4
items):
{"sub":"johndoe@example.com",
"aud":"https://localhost:8443",
"nbf":1611142470,
"ephkey":"AAAAGX69P2EmLTIF8LhAYKGX69P2Em[…]sIqzUEf31BuV5s7ITu7V6fvDCzJMHLvI
Axx3Wr4Jr1WQundGLoP/1F3qV3f9T0Wv2cNc/CAm82m/"scope"EYRB9TYGczWm5GHo1m1jYisF
jLmu7wX1lK2WCiLOw",
"scope":"/blog/protected/get/users/pippo@pippo.it/profile

/blog/protected/get/users/pippo@pippo.it/posts",
"iss":"https://localhost:9443/as",
"exp":1611187199,
"iat":1611142470,
"client_id":"https://localhost:9543/client",
"nonce":0394852-3190485-2490358
}

Demo.
The returned code
is an encrypted
JWT.

Decrypt the
returned JWT →
using your own
secret key

You'll discover an
ephemeral key →
inside your JWT.
The ephemeral
key encodes
attributes
corresponding to
JWT claims

1 2 3 4 Demo Time 5

https://localhost:9543/client/callback?code=eyJlcobDH8yQv1lEUMChNdxNhqeO9FeUhZsC+Jx47IB7Nxy/a7gHSTQI/4xV3VUzjyLAUn9OKMnGCEMBthyeN29Rkc1dcFUPhKghwA0TRNBIrH8f1hczg+3p8XtXJM5N+dXGcDmi/F8LhAYKGX69P2EmsIqzUEf31BuV5s7ITu7V6fvDCzJMHLvIAxx3Wr4Jr1WQundGLoP%5b…%5d24f8

//Finally decrypt the challenge using both clientKey & ephKey

plaintext=abeProvider.decrypt(new Base64URL(clientKey), new

Base64URL(ciphertext.parts[0]), new Base64URL(ciphertext.parts[1]))

abeProvider.decrypt(new Base64URL(ephkey), new

Base64URL(plaintext.parts[0]), new Base64URL(plaintext.parts[1]))

//You will get:

GHXMPFDR1Q5FSTMsc29QaOhYJAwLZA5KtB3Hy1QwBrTFTJIcY0NtjFmwwQTlKia7onlwz9vgSqL

NAusTceCKCTHSumR8ubGUmfTmelMuGBc2hD89q4SA1m4mn8g1gGmD

//Repeat your request to the RS

GET

https://localhost:8443/blog/protected/get/users/johndoe@example.com/profile

Authentication: <new

Base64URL(“https://localhost:9543/client:GHXMPFDR1Q5FSTMsc29QaOhYJAwLZA5KtB

3Hy1QwBrTFTJIcY0NtjFmwwQTlKia7onlwz9vgSqLNAusTceCKCTHSumR8ubGUmfTmelMuGBc2h

D89q4SA1m4mn8g1gGmD”)>

//Finally you'll get

200 OK

{name:"John Doe",

country:"Italy"}

Demo.
Decrypt the
ciphertext using
your secret key
and your JWT
ephemeral key.

Present the secret
as a response to
the RS challenge.

Finally get the
requested resource

→

1 2 3 4 Demo Time 5

Compliance with ARF functional reqs (ARF chapt. 4)

• 1. Perform electronic identification and store and manage qualified electronic attestation of attributes (QEAA) and
electronic attestation of attributes (EAA) locally [or remote]: natively satisfied

• 2. Request and obtain attestations from providers, qualified electronic attestation of attributes (QEAA) and electronic
attestation of attributes (EAA): natively satisfied

• 3. Provide or access cryptographic functions: natively satisfied

• 4. Mutual authentication between the EUDI Wallet and external entities: natively satisfied

• 5. Selecting, combining and sharing with relying parties PID, QEAA and EAA: natively satisfied

• 6. Privacy by design and selective disclosure of attributes: natively satisfied (by the intrinsic ABE capability to fulfil an
ACP without disclosing unnecessary attributes/their value)

• 7. Provisioning of interfaces to external parties: natively satisfied

• 8. Authentication of (Q)EAA and PID when [and only when] those are linked to the EUDI Wallet: natively satisfied

• 9. Online and offline Wallet authentication with third party: natively satisfied

• 10. very strong crypto: natively satisfied

• 11. User interface supporting user awareness and explicit authorization mechanism: natively satisfied

• 12. Signing data by means of qualified electronic signature/seal (QES): signature module on a different interface

1 2 3 4 5 Takeaway

