Attribute-Based
Encryption

for Access Control
1n (Real World)
Cloud Ecosystems

Giovanni Bartolomeo
CNIT

(giovanni.bartolomeo AT uniromaZ.it)

Good Morning!

1. About myself:

https://www.linkedin.com/in/giovannibartolomeo/

(C]nl lL lt nterumversiario 2. About CNIT: https://www.cnit.it/

per le telecomunicazioni

BEGIN USER PRIVATE KEY BLOCK

P HNX NG Gfndk TWNL Z Xk AAAUMOH

3. Some resources about this work:

FIKESRFEZMOQyMTYSOWUZN MW FA"))
f§Ix0DMSYZgwMTF jM2GhILKhIQIdo: https: / / glthub.com/ netgroup/ abe41wt

GROdASdecOxml k3CJuSG26ESZFaaM

https://www.linkedin.com/in/giovannibartolomeo/
https://www.cnit.it/
https://github.com/netgroup/abe4jwt

1 OpenlID: Implict Grant & Authorization Code Flow 2345

Why this work?

1. Today, OAuth2/OpenlD Connect 1.0 is the most common auth mechanism on
the web, just after static username/password auth

2. Broken Access Control is OSWAP#1 Application Security Risk in 2021

3. OAuth2 specs increasing their complexity as soon as new vulnerabilities are
found

4. Using predicate encryption instead of traditional token signature we can
achieve a simpler and more effective design

1 OpenlID: Implict Grant & Authorization Code Flow 2345

The ideal Oauth

flow (Implicit _

Grant) I
Interesting part of I N
the protocol under Mmoo

investigation is the
authz req and res,
which happens

through http GET
cross site/server
side requests. b
e S

Implicit iS RESOURCE SERVER CLIENT

unsecure as 4, Resource
parameters are
carried en clair as

URL in the authz
req/res.

1. Login &
Consent

3.

Reguest +
JWT

1 OpenlID: Implict Grant & Authorization Code Flow 2345

Here is a real- %
W 01'1 d End User Client Authorization Server Res Server

implementation of :
OAuth2.0 as |
OpenID Connect :
1.0 Authorization <
Code flow using

Json Web Tokens.

authorize request (clientlD, state, scope,)

prompt user

login (userlD) & consent

v¥__ |l _ ¥ _

generate code P_\]

Instead of a token,
the authz res
returns a code

|
|
|
|
|
|
|
| I auth OK (state, code)
|
|

which is later :
|
|
|
|
|
|
|
|
|
|
|

-

request (code, clientlD, secret)

v _ 1 _|]

exchanged for a
token at the token

validate (secret)
validate (code)

|
|
|
|
|
|
|
L' response (IDtoken, accessToken, refreshToken)
I
I
I
I
I

endpoint. '
pPo |

!

|
Several request (accessToken|refreshToken) |
vulnerabilities : ":
related to |
code/parameter '

injections.

1 2 Formal model using A&B syntax and results from OFMC3 45

We investigated Dolev-Yao style model, indeed, much less comprehensive than Fett, Kiisters,
OIDC formal and Schmitz's [2]:

correctness of - use a fixed AS

Authz Code Flow - does not model end user interface (Login&Consent not modeled)
using Opensource - does not capture web specific attacks

Fixedpoint Model - does not provide native support for strong Client authentication (just
Checker [1] Client's username/pw)

Investigation under various initial conditions:
- Original Authentication Code Grant Flow
- A nonce is returned in the token
- RFC 7636 Proof Key for Code Exchange (PKCE) for OAuth2.0
- Request object signature
- Demonstrating Proof of Possession (draft-ietf-oauth-dpop-04)

1. S.Modersheim. Algebraic properties in Alice and Bob notation. In International Conference on Availability, Reliability and Security (ARES 2009), pages
433440, 2009.

2. D.PFett, R Kiisters, and G. Schmitz: The web sso standard OpenID Connect: In-depth formal security analysis and security guidelines. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pp. 189-202, Aug 2017.

1 2 Formal model using A&B syntax and results from OFMC3 45

Our model
Attempt #1
(Nonce is not
returned in the
token)

Results...
Attacker may
impersonate AS

and return (inject)
a (previously
obtained) wrong
code to the Client

Goals:

authenticates on

authenticates on
secret between

authenticates on

weakly authenticates

https://github.com/netgroup/abe4jwt/blob/master/AnB/00%20Auth_Code_noPKCE_noNonce_flawed.AnB

1 2 Formal model using A&B syntax and results from OFMC3 45

Our model

Attempt #2 (with
Nonce)

Results...
Without
protecting =
injection of
parameters into
the authz req,

wrong token

returned.

Protecting;:

Only the authzreq ECFEEE

—> code injection |

Only the auth res |

9 DOS bY NOHCQ secret between
injection authenticates on

(detectable ifthe weakly authenticates on
Client checks Nonce

in the returned

token).

https://github.com/netgroup/abe4jwt/blob/master/AnB/01%20Auth_Code_noPKCE_Nonce_unprotected_flawed.AnB

1 2 Formal model using A&B syntax and results from OFMC3 45

Our model

Attempt #3 (RFC
7636 PKCE is

inroduced)

Results...

Not protecting
messages: attacker
may alter the

parameters in

authz req but

presents the

correct PKCE

Challenge to Goals:
obtaing a wrong
code, which is
irqu¢ed5hlthe authenticates on

flow and later secret between
exchanged for a authenticates . on
(WI‘OIlg) token by weakly authenticates on
the Client.

authenticates on

https://github.com/netgroup/abe4jwt/blob/master/AnB/03%20Auth_Code_PKCE_noNonce_unprotected_flawed.AnB

1 2 Formal model using A&B syntax and results from OFMC3 45

Our model
Attempt #4 (RFC

7636 PKCE +
signing authz req)

Results...

Simply providing
authenticity of the

authz req — even

without

encrypting its

content — finally

results in a safe

flow! Goals:

authenticates on

Protecting authz

reS(HibfVVOTkS authenticates on

too. secret between
authenticates on
weakly authenticates on

https://github.com/netgroup/abe4jwt/blob/master/AnB/04%20Auth_Code_PKCE_noNonce_req_protected_OK.AnB

1 2 Formal model using A&B syntax and results from OFMC3 45

Our model
Modelling sender-
constrained token.

Several proposed
approaches (see
draft-ietf-oauth-
security-topics)

We investigated
DPoP (popular

draft)

Results...

Safe if DPoP sign
is over sufficient
t t authenticates on
parame ers (a authenticates on
leaSt Pk(C)/ RS, secrgt between
authenticates on

SCOpe) to avoid weakly authenticates
reply attacks.

https://github.com/netgroup/abe4jwt/blob/master/AnB/05%20Auth_Code_PKCE_DPOPv4_OK.AnB

1 2 Formal model using A&B syntax and results from OFMC3 45

So what?
AUTH

Cod@ ENDPOINT
While the Client
knows in advance
the Nonce, but has O@ﬁ TOKEN
no information on ENDPOINT
which resources the
user has authorized e P
access to, the o . INTROSPECTION

A distributed session ENDPOINT

Resource Server 008" p0° o
does not know none @ , A9, RO

of these, even if this

information is
written in the token. CLIENT
Th ew h O I S SySte m Ty WT={"iss":"https.//acc.example.com”,
. "aud":"https://app.example.com”,
token signature "sub":"jsmith@example.com”,
. J "scope":"openid email country”,
(sometimes ACP 1353001076

RESOURCE SERVER

introspection "nbf":1353601926,
"exp":1353604926,

endpoint is used). “nonce”:0394852-3190485-2490358,
)

1 2 3 Present ABE and show its application to OIDC4 5

Modern crypto Public Key Crypto Identity-Based Encryption[1] Attribute-Based Encryption[2-4]

may come into

help... Z={X} pk(a) Z={X}mpk,"receiver" Z={X}mpk,(a/\b)Vc
— -1 — -1 = -1
X_{Z} sk(a) X_{Z} mpk,sk("receiver" X_{Z} mpk,sk({a,b})
Solves key-distribution ~ Many randomized secrets keys Combines IBE with SSS [2] and
problem (pk is publicly for one set of MPK, MISK monotonic span trees [3,4]
available)

Public keys "replaced” by plain A fine-granuled content access
strings policy implemented in crypto!

A KMS distributes MPK and

Many other math properties...
generates secret keys

1. A. Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 47-53.

Springer-Verlag New York, Inc., 1984.

A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457-473, 2005.

3. V. Goyal, O. Pandey, A. Sahai, B. Waters: "Attribute-based encryption for fine-grained access control of encrypted data", Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS '06, pages 8-98, New York, NY, USA, 2006. ACM.

4. J. Bethencourt, A. Sahai, B. Waters: "Ciphertext-policy attribute-based en-cryption”, Proceedings of the 2007 IEEE Symposium on Security and
Privacy, SP'07, pages 32-334. Washington, DC, USA, IEEE Computer Society.

N

1 2 3 Present ABE and show its application to OIDC4 5

Our proposed %
flOW. 1? a Shghﬂy End User Client (C) Rev Proxy Authorization Server (as)
mOdlfled . | ! | { Challenge:
implementation of | ﬁ - t | |
O ID Connect | | Sggsgme o | |
en
1 (}))I licit Grant | | g | {x3Impr nImpk, client_ia"
. mp 1C1 ran : : 401 Unauhtorized : :
IChallenge}h(C RS, Scope,as)ipk(C) @ as
plus an HTTP | » | B otal |
hall) | | , | Where
Cha enge | | Auth request | |
response | | (C,RS,5Scope,Nonce) | Pl)))
autllientication : : : : h =1ss A client_id N\ aud
- : Tomel et : | A user N\ scope
| I |
S : Login & consent : F: N (t<€xp)

| Auth OK '

Problems 1. 2 and lH {inv(h(C.as,RS Scope)),Noncelpk(C) B Same Access Control
7 ! . .]
7 ! oA Policy as in a JWT:

3 wholly solved by Resource request |

| Scope,Challenge >|

| JWT={"iss":"https://acc.example.com",

“client_id":"1234987819200.apps",
"aud":"https://app.example.com",
"sub":"jsmith@example.com",
"scope":"openid email country",
"igt":1353601926,
"nbf":1353601926,
"exp":1353604926,

“nonce”:0394852-3190485-2490358,
e}

I

I .

| retrieve resource
| from RS

I

I

|
|
|
|
|
|
I
Crypto :
i
|
|
|
|
|
|

|
|
|_< Data |
| |
| |
| |

1 2 3 Present ABE and show its application to OIDC4 5

Simpler and effective
design, leveraging
on e2e encryption

Straightforward to
implement

Less certification
costs

Access control

decision enforced by
math, not by code

Goals:

Protocol proves to authenticates on
knefornjaﬂyrcorrect authenticates on

authenticates on
secret between

with respect to the
original goals

1 2 3 Present ABE and show its application to OIDC4 5

Zero Knowledge

using ABE
challenge
/response

N — @

AUTHORIZATION -
A single ephKey SERVER 1. Login &
may contain Consent
. ephKe

SeVGféal 5 ¥ Subject.name :Mario Rossi
attributes... {% Subject.age : 34.y.o.

Subject Country Ita

BUT g i . Request
T RESOURCE CLIENT
...policy can be Verifier ~ scryee) i

. Challeng

shaped to 2
minimize the V Q | - Wallet
needed Subject.age > 18 y.o . Response
knowledge -> ety y-0.

Subject.Country in {Austria, Belgium, ...,
Italy, ..., Sweden}

1234DemoTime5

Demo Time...

ABE4JWT.NET

Source code on

https://github.com/
netgroup/abe4djwt

e Attribute Based Encryption

< C A Non

urc

x +

localhost:9

43/client/callback?cods Y

Your Email

Your Nickname

I' far :| l I

Q

Your Country

PAL L/ BAraLU UKUGLVASLCNOKJEAZIINZFKMMVKN] YWNDLSYWRNJLRNLQLLITQVruermgiumZoveuvcc /wKkmes
. p GgnVDCmkaefbPCa+
- 59 Fwi v 8¢ i MDAXN2QyNjehRLOhQQIV
XhPb1BRqo1jepqc85HSKXIR3S1GiRBQeFP7NT 3AXWE
ahRLOhRQQMMOidM1518IfHPdtuvFEbXOPdg1IKoVHI7I5iX2g)
2H/vYqsDWORIkX2F1ZDMSYTYzNDgwM2VkM2ShRLORQQIODdIy14HO4
QE9AT 09Ptt7ptt(bw6Dj+6FvZXp6/qQtcqyiAh/khqEUHUUVhwc81MgP
NGIyZ JA2YFKhRLOhQQMAMrXMKK tXMK9OHQVOop3+mRtHUX/ cvif/iZhoqy TvAOiORWPF
NOBptv16qmoASUORIKX2IONTEXODQ2YJUSNZN1IZWOhRLOhQQIE ImvuP8q
f YbTBNE RBurj2deIb8ctk7nVrraQf3f RIKX2JN2F
52aUBKOBXM8SS5ydRkcGcIKNLEBDETBSchMjXhFLO/eNS8MIy+L
X2V4cDOyMDIWLTEYLT VECI8rHAHYmUdk3$
qNMQatud4DEGReUXjt6EOK
G) BibGl1lbnRfal
ZG11bmN1Omh@dHBz0i8vbG9jYW N
1hemlvQHIve3NpLmlOL3Byb? 8
YXJpb@Byb3NzaSS5pdCowb3NOcyBvcik V) g e c2
- NpLmloL2 2NvcGU6L2Isb2cveHIvdGVidGVKL 2Fk?
yotYXIpbo wb3NOcykgYWSkIGV4cDOoyMDIWLTEYLTIS

] Token generated!

MDhhMTYWOT
m+2PE «zCAduSP1XdAuBPzK12

MoRJk

podHRwc 2
y9jbGl1lbn ZTovYmx

vcHIvdGV

ZLAVOh2CcgyHNSGVI4bCgRZTA7K3PS5BZR7Z1Kn1wmjbYbQUUVP3DYLAFsbLJARLEt1IKHAGNLIPGZO3DyJ I 7k

[] Connectir
i.it/posts

[] Data to poste{"titl ABE4IWT", "text mplementing
ibute-Based Encryption for access control on the Cloud...

to urishttps://localhost log/protected/add/users/mari
ETSI TS 103 Attr
first prototype, now read

Authorization header (u password)shttps://localhost 3/client :BSkVyNP,
4bwpskUMr1XBDqO9VvrRpDISP1SIpncZLdVOh2cgyHNSGVi4bCgRZTd7k3PSSBZR7Z1Kn1wmjby,
JUVP 3L sbLJAhLt1KHAGN1PGZO3DyII7Y
] Content pplication/json; charset
Received response:201
completed in 832 ms
] GET /blog/get/us yosts/latest/10
] Connecting to urishttps://localhost
1 :
]

Type

] Procedure

:8443/blog ;/posts/latest/10
Data to p null
Authorization header (use
Type=null

:password)s=https://localhost:9543/client:
Content

]
] Received respons 00
1

Procedure completed in 100 ms

https://github.com/netgroup/abe4jwt

12 3 45 Takeaway

Takeaway

1. Token signature, authorization code, Client's object request signature,
PKCE and DPoP create a distributed session between Client,
Authorization Server and Resource Server.

2. To achieve the same result, using a different design, we leverage on
predicate encryption. ABE generates randomized encryption keys from
a chosen set of attributes and ciphertext from regular expressions over
them.

3. Toimplement an access decision, tokens based on digital signature
require a coordination of signature verification and software
components. Using ABE policy, the access decision is "automatically”
achieved, by solving a cryptographic challenge.

12 3 45 Takeaway

Takeaway

Existing or ad-hoc invented additional signature schemes are being
progressively introduced in OAuth2/OIDC to fit Zero Knowledge
requirements (essentially to turn a two-party relationship signer/verifier
into a three party one: issuer, prover, verifier).

ABE natively implements this three-party relationship: featured with a
native policy definition language, an ABE-based challenge/response
protocol may well support several ZK schemes (incl. not only selective
disclosure of attributes, but also: proof of membership, range proof,
complex predicate proof...)

Several features (from biometric authentication to revocation) may be
reliably achieved without changing the schema, just by adding proper
attributes to keys

12 3 45 Takeaway

More info about
the crypto we
used

9

...but not for this
talk ©

THANKS!

ETSI y 748
A\ 4

The Standards rPeople

ETSI Security Week 2020 goes virtual!

Even More Advanced Cryptography

ETSI Standardization in Advanced
Cryptography
Presented by: Frangois Ambrosini, Umlaut

Christoph Striecks, AIT Austrian Institute of
Technology

https://www.brighttalk.com/webcast/12761/409316

https://www.brighttalk.com/webcast/12761/409316

Some Backup Slides..

1 2 Formal model using A&B syntax and results from OFMC 3 4 5

Signing request

In OIDC, this can be
done using the
Request Object (a
signed JWT passed
in the authz req).

However care must
be taken to not
implement naive
vulnerabilities.

e

c & openid.net/specs/openid-connect-core-1_0.htmI#WTRequestValidation aQ ® # e *H»

6.1. Passing a Request Object by Value

The request Authorization Request parameter enables OpenID Connect requests to be passed in a
single, self-contained parameter and to be optionally sighed and/or encrypted. It represents the
request as a JWT whose Claims are the request parameters specified in Section 3.1.2. This JWT is
called a Request Object.

Support for the request parameter is OPTIONAL. The request parameter supported Discovery
result indicates whether the OP supports this parameter. Should an OP not support this parameter
and an RP uses it, the OP MUST return the request not supported error.

When the request parameter is used, the OpenlID Connect request parameter values contained in
the JWT supersede those passed using the OAuth 2.0 request syntax. However, parameters MAY also
be passed using the OAuth 2.0 request syntax even when a Request Object is used; gl [e1f]le
typically be done to enable a cached, pre-signed (and possibly pre-encrypted) Request Object value
to be used containing the fixed request parameters, while parameters that can vary with each

request, such as state and nonce, are passed as OAuth 2.0 parameters.

1 2 Formal model using A&B syntax and results from OFMC3 45

Summarizing...

Issue #1

Create a distributed session between C, AS
and RS ensuring the semantics inside a JWT is
commonly understood and correctly enforced

Issue #2
Provide confidentiality in token transmission
(will avoid code4token)

Issue #3
Guarantee Client’s proof of possession

1 2 3 Present ABE and show its application to OIDC4 5

Our proposed
flow is a slightly
modified
implementation of
OpenlD Connect —— E—
1.0 Implicit Grant AUTHORIZATION
+ HTTP challenge- SERVER +
response
authentication

9

CLIENT &

5. Response

Problems 1, 2 and
3 wholly solved by

crypto

RESOURCE

1 2 3 Present ABE and show its application to OIDC4 5

Zero Knowledge

Need: minimize
disclosed
information to
preserve privacy

An example: BBS+
signature (draft-
looker-cfrg-bbs-
signatures-01, July
2022; based on
Boneh, Boyen and
Shacham, 2004)

_)

A Zero Knowledge schema guarantees that no verifier learns anything other than the fact that a
true statement is true.

SK IKM, keyInfo

PK SK

signature SK, PK, header, messages

result PK, signature, header, messages

proof PK, signature, header, ph, messages
disclosedIndexes

PK, proof

disclosedMessages, disclosedIndexes

result length, header, ph

Pairing-based ECC signature that signs multiple messages (i.e., claims in a token). The
signature and messages can be used to create signature proofs of knowledge in zero-
knowledge proofs in which the signature is not revealed, and messages can be
selectively disclosed

Suggested use in Oauth2/OIDC: the access token features a BBS signature. The Client
generates a unique proof from the original token and includes the proof in the request
instead of the token ("non-correlating Security Token" — Appendix B.1)

The Resource Server can detect a replay attack by ensuring the proof presented is
unique (Appendix B.2)

1234DemoTimeb5

Demo explained...

Once only: set it
up by getting
MPK by the
Authorization

Server.

Then register your
own secret key™.

The AS will post
your secret key =
to your chosen
endpoint
(redirect uri).

* Slightly more
complex than this in
our implementation.

GET https://localhost:9443/as/jwk

AAAAIQpvYjuP8CFnxAVHGt15Twhmt DI1eGFtcGx1Lm9yZy5tcGsAAAGOOQFZsgEEtLIBAAEBZE
0z17JRPkRz/S03dy/wO2bnrV0fbtzJvbzzF0jBIU66RtdPAPYPEVQig8dXRu0t0z4Wxu+cobDH
8yQv11EUMChNdxNhgeO9FeUhZsC+JIx47IBTNxy/a7gHSTQI/4xV3VUzjyLAUN9OKMnGCEMBthy
eN29Rkc1dcFUPhKghwAOTR/NBIrH8f1hczg+3p8XtXJIJMS5N+dXGecDmi/F8LhAYKGX69P2EmsIgz
UEf31BuV5s7ITu7VofvDCzIMHLVIAXxx3WrdJr IWQundGLoP/1F3qgV3£f9TO0Wv2cNc/CAm82m/EY
RBOTYGczWmS5GHoIm1jYisFjLmu7wX11K2WCiLOb/6hAmcxoSSyoSECIdvwkMTNv6Sg9CagndJwH
3dGOCNnNM1KLwdSHARcVBO6GhAmMcyoUSzoUEDADbOVvVPhPMbPW561 fUZNDLTNO fIKTGEdmCngii/
wQZO9wVAhgTtFAWMNal JviXewO0Lud4tnI1hXnO5MQ1XMQObngO0gEBa6E1HQAAACCA4JZzeAHhPGSHQd
NVu81lFeANvDfgOeh86qUlf1F74w/MA==

POST

AAAAGapvylA44TLubhSENS23PsJNXSctkZWNLZXkAAADJORIJEXZCcxXNGEzZ2GQ40TMyMGQOYJGhJL
KhIQMKZMIOFrxWOtoROc52TDA8)XZ4/YDTnoy3b87hHOSb2WaESZEF83MTRhM2RkODkzMJBkNGIx
0USzoUECBRjGJdYdMhnah/N94MLaixTAO58KUNxvSY8butWg+FTUTTKS5S1MsfDh2evOytWHXAFQ
ptsTOtXiu/jfuwf3g4goEFaWbwdXShLBOAAAANY2xpZW50X21kOmh0dHBz018vbG9]YWxob3NO
OjJk1INDMvY2xpZW50

https://localhost:9443/as/sk?redirect_uri=https://localhost:9543/client/callback&state=14c5ed6e-d184-b1a2-5ad1-af978cf79bcf
https://localhost:9543/client/callback&state=14c5ed6e-d184-b1a2-5ad1-af978cf79bcf

1234DemoTimeb5

Demo.
Resource server GET
offers publicly
accessible

[{title:"My first post", text:"Love this one"},
resources and

{title:"My Second post", text:"Not so much"},

private resources. {title:"My Third post", text:"Definitively hate it"}]

Access to a private
resource is denied.

But what is this?> [EAESRUNEASHN:(O)SNRANS;

WWW-Authenticate: Basic realm =
zOROgb8rcmgGFCG7u481lSpodMuslrsgEJo[...] RIDXzcxNGEzZ2GQ40 TMyMGQOYjGhJL
KhIQ[..]MCgHFHX9W5ehsz1d0g9WluUxvsxYkKk3fKxDuUuEX1VptuZyX1SMYTZFY1PKwdfP
wLSG8BKOhA1 9FRKFFHQAAAEBNKeNH1bajggra3IZhM5HJoBIJCnYg7xR1IHo92@1ocalh
ost

https://localhost:8443/blog/get/users/posts/latest/3
https://localhost:8443/blog/protected/get/users/pippo@pippo.it/profile

1234DemoTimeb5

Demo.

Login and
Consent happens
as in a traditional

OpenlDConnect
flow.

1234DemoTimeb5

Demo.
The returned code

is an encrypted
JWT.

Decrypt the
returned JWT -
using your own
secret key

You'll discover an
ephemeral key -
inside your JWT.
The ephemeral
key encodes
attributes
corresponding to
JWT claims

https://localhost:9543/client/callback?code=eyJlcobDH8yQv1lEUMChNdxNhqeO9FeUhZsC+Jx47IB7Nxy/a7gHSTQI/4xV3VUzjyLAUn9OKMnGCEMBthyeN29Rkc1dcFUPhKghwA0TRNBIrH8f1hczg+3p8XtXJM5N+dXGcDmi/F8LhAYKGX69P2EmsIqzUEf31BuV5s7ITu7V6fvDCzJMHLvIAxx3Wr4Jr1WQundGLoP%5b…%5d24f8

1234DemoTimeb5

Demo.

Decrypt the
ciphertext using
your secret key

and your JWT
ephemeral key.

Present the secret

as a response to
the RS challenge.

Finally get the
requested resource
9

12 3 45 Takeaway

Compliance with ARF functional reqs (ARF chapt. 4)

1. Perform electronic identification and store and manage qualified electronic attestation of attributes (QEAA) and
electronic attestation of attributes (EAA) locally [or remote]: natively satisfied

2. Request and obtain attestations from providers, qualified electronic attestation of attributes (QEAA) and electronic
attestation of attributes (EAA): natively satisfied

3. Provide or access cryptographic functions: natively satisfied
4. Mutual authentication between the EUDI Wallet and external entities: natively satisfied
5. Selecting, combining and sharing with relying parties PID, QEAA and EAA: natively satisfied

6. Privacy by design and selective disclosure of attributes: natively satisfied (by the intrinsic ABE capability to fulfil an
ACP without disclosing unnecessary attributes/their value)

7. Provisioning of interfaces to external parties: natively satisfied
8. Authentication of (Q)EAA and PID when [and only when] those are linked to the EUDI Wallet: natively satisfied

9. Online and offline Wallet authentication with third party: natively satisfied
10. very strong crypto: natively satisfied
11. User interface supporting user awareness and explicit authorization mechanism: natively satisfied

12. Signing data by means of qualified electronic signature/seal (QES): signature module on a different interface

