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ABSTRACT
This paper presents DeepClap, a gesture-based smartwatch user
authentication scheme. DeepClap utilizes a faint clapping action
performed by the user while wearing the smartwatch in one hand to
authenticate its user. Technically speaking, it extracts users’ identity
on collected arm-movement signatures using built-in accelerom-
eters and gyroscope sensors and authenticates them afterward.
Preliminary evaluation of DeepClap on a collected dataset of 20
users results in reaching an overall average accuracy of ≈ 97%, and
True Accept Rate (TAR) of 94.27%, and a False Accept Rate (FAR)
of 0.296% using Deep Neural Network (DNN). The user-friendly
nature of DeepClap, which eliminates the need for users to re-
member secret codes or gestures, and is resilient to advanced Fast
Gradient Sign Method (FGSM) attack, make it an attractive option
for widespread adoption.
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1 INTRODUCTION
Smartwatch-based behavioral biometrics - the use of collected
unique human behavioral patterns, such as swiping [15], typing
rhythm [14], theway a personwalks (gait) [1], or arm-movements [10],
could be used to build Electronic Identification and Trust Services
(eIDAS)1 solutions to provide an additional layer of security to the
1https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT’23, June 7–9, 2023, Trento, TN, Italy
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-5632-9/18/03. . . $15.00
https://doi.org/10.1145/3176258.3176318

authentication process. Exploiting behavioral biometrics in eIDAS
solutions would, enhance the security of the developed system:
as unlike physical biometrics, i.e., fingerprints or facial attributes
which could be stolen or replicated, behavioral patterns are difficult
to be mimiced or copied. Additionally, as behavioral biometrics are
dependent on the user actions and habits, they become more suited
to frictionless and unobtrusive user authentication [2].

Behavioral-biometric-based smartwatch user authentication
schemes could be used in eIDAS supported online banking mecha-
nisms to ensure a secure and convenient way of authentication of
cross-border users. To this end, these schemes could be exploited
(i) to provide a second factor of authentication2, (ii) for contactless
payments3, (iii) for secure messaging, and finally (iv) for providing
location-based user authentication4, before authorization of the
transaction.

In this paper, we propose a frictionless and user-friendly
behavioral-biometric-based smartwatch user authentication scheme,
namelyDeepClap, as an additional modality, for secure and reliable
user authentication. In the enrollment stage, DeepClap, while the
user claps (a faint clap without a sound), collects sensory data from
accelerometer and gyroscope sensors, to profile users’ unique arm
movements. Later, in the authentication stage, DeepClap collects
the same movements and matches them with the stored ones to
execute identity verification. DeepClap, by applying a Deep Neural
Network (DNN) decides if the smartwatch is worn by a legit user
or by an impostor. Access to the banking services is granted if the
user is confirmed as a legit user otherwise it is denied. DeepClap
is completely frictionless and usable as it does not require any
cumbersome effort from the user. We frame the problem of user
authentication for banking applications as an n-class classification
problem where the classifier is trained on samples of several users,
hosted on the server. The decision is made on the server and access
is granted or denied on the smartwatch.

DeepClap is an effective authentication scheme as it is not only
user-friendly (users are not required to remember any secret or
manage a token) but accurate. We report an overall accuracy of
≈ 97% (TAR of 94.27% and FAR of 0.296%).
The main contributions of the paper are listed below:

• The proposal of a DNN-powered arm-movement-based smart-
watch user authentication scheme. DeepClap authenticates
the user based on differences (the smaller the better) in the
arm movements footprints generated during short clap (2, 3,
or 4 sec).

2A customer while logging into their banking account, can receive a notification on their smartwatch to confirm their
identity
3The customer’s on the smartwatch needs to be authenticated using biometric data before the payment is authorized
4The customer’s smartwatch GPS sensor could be used to verify that the customer is in a specific location before
authorizing the transaction
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• The collection of data from an accelerometer and gyroscope
sensors in three activities, sitting, standing, andwalking from
20 users.

• Implementation and evaluation of DeepClap on real smart-
watch .

2 RELATEDWORK
With the development of smartwatches, various features have been
integrated, such as sensors that can detect movements like wrist
rotations, arm gestures, and finger actions, as well as physiolog-
ical readings like heart-rate, blood oxygen levels, skin tempera-
ture, and conductance. These readings could be used to develop
implicit user authentication schemes, which have become an in-
triguing area for research in behavioral biometrics. Although the
potential of using tapping [14], swiping [15], and motion-based
actions [10] [12] [4] [6] [11] [17] [9] for user authentication has
been explored, behavioral biometric-based user authentication on
smartwatches have remained a less explored area.

The studies based onmotion-assisted behavioral biometrics, such
as Buriro et al. [4][6], Liang et al. [11], and Huang et al. [9], are
highly relevant to our research. Liang et al. [11] propose hand-
punch behavior as a behavioral biometric modality to authenticate
users. Their approach, exploited accelerometer data to build a one-
class SVM classifier achieving an accuracy of 95.45% on the collected
dataset of 20 users. In [4] authors suggest using motion-assisted
finger-snapping gestures to authenticate the smartwatch users. This
finger-snapping approach exploited the accelerometer and gyro-
scope sensors for user profiling. Using the Multilayer Perceptron
(MLP) as the 1-class classifier, the authors reported a TAR of 82.34%
at a FAR of 34.25% on 15 training samples only. Later, Buriro et al.
[6] explore smartwatch-worn in-air-finger-writing as a behavioral
modality to authenticate the users. Using an MLP 1-class classi-
fier the authors reported a TAR of 80.52% at 21.65% FAR on just
15 training samples. Huang et al. [9] combine gyroscope-powered
in-the-air signing gestures with Dynamic Time Warping (DTW) as
a classifier, and reported 90.1% accuracy on an 11-volunteer dataset.

Table 1: Comparison of our scheme with the related work.
Our comparison is limited to the work which involved sen-
sory readings, the mode, the classifiers the number of users,
and the obtained results.

Paper Input Method Sensors Classifiers Users Results

[10] Free-form
arm-movement

Acceleromter
Gyroscope DTW 5 Accuracy = 84.6%

[11] Hand-punch
movement Accelerometer SVM 20 Accuracy = 95.45%

[8] Hand-writing-based
movements

Acceleromter
Gyroscope

MLP
SVM 21 EER = 6.56%

[6] In-air-finger-based
movements

Acceleromter
Gyroscope

DTW
MLP 11 TAR = 80.52%

FAR = 21.65%

[4] Finger-snaping-based
movements

Acceleromter
Gyroscope MLP 11 TAR = 82.34%

FAR = 34.12%

[5] Hand-clapping-based
movements

Accelerometer
Gyroscope

KNN
MLP
RF

50
TAR = 93.3%
FAR = 0.22%

Accuracy = 96.54%

[16] Motion-based
activities (18)

Accelerometer
Gyroscope

KNN
DT
RF

51 Accuracy = 96.65% (clapping)

This work
Hand-clapping-based

movements
Accelerometer
Gyroscope DNN 20

TAR = 94.27%
FAR = 0.269%

Accuracy = ≈ 97%

The current paper builds upon the research presented in [5] and
presents an extended version of the previous work with a number
of key enhancements. One significant improvement is exploitation
of Deep Neural Network as a classifier, which sets this work apart
from other studies (as shown in Table 1). This approach has enabled
more accurate and efficient user recognition from clapping ges-
tures, improving the overall performance of the system. Another
notable addition to the present study is the implementation and
evaluation of the approach on a real Android smartwatch, reflecting
real-world use cases of the technology. The results of this imple-
mentation demonstrate the practical effectiveness of our approach,
as well as its superior accuracy when compared with existing meth-
ods. In addition, DeepClap is robust to adversarial attacks: We
also evaluated the robustness of the proposed user authentication
framework against adversarial examples. Overall, our DeepClap
brings a significant advancement in the field of gesture-based user
authentication, with notable improvements in terms of TAR, FAR,
and accuracy. Furthermore, the integration of DNN as the classifier,
robustness to adversarial attacks, and real-world implementation
make DeepClap unique and highly effective, paving the way for
further research in this area.

3 APPROACH
Our proposed method employs the concept of using arm micro-
movements during clapping as a behavioral biometric modality.
We employ n-class classifiers at server side to verify the wearer’s
identity and authenticate them. The flowchart of our proposed
approach is illustrated in Figure 1.

DeepClap obtains arm micro-movements during the clapping
gesture. Technically speaking, DeepClap firstly collects raw 3-
dimensional sensory data (from accelerometer and gyroscope) and
extracts 82 statistical features and sends to the centralized server.
This server stores the received feature vector in its database as a
template to match query samples for user authentication later.

4 EXPERIMENTAL ANALYSIS
In this section, we explain our experimental analysis approach.

4.1 Data Collection
We developed a customized Android application, namely ClapAuth,
to collect user arm movements during the course of clapping. Our
application can be installed on any Android smartwatch having
latest Android version.

We recruited 20 participants for this study. All the participants
were students or researchers: bachelor, masters or PhD.We collected
clapping data in three body postures: sitting, standing, and walking.
We collected 100s of clapping data per user in each body posture
resulting in 300s of users arm-movements in all three body postures.
In this way, we collected 6000s of clapping data from all 20 users.

DeepClap requires its users to signup. Here sign-up means the
provision of 300s of data for user profiling. After the signup process
and the users can test the application by clicking on the sign-in
button and providing the test clapping action.



Figure 1: Block diagram of our approach

(a) Sign-in/up
process

(b) data collector

Figure 2: The data collection interface

4.2 Feature Extraction
The accelerometer and gyroscope are 3-dimensional sensors which
means they generate readings in X, Y, and Z dimensions. Addition-
ally, we computed the fourth dimension and named it as magnitude
using the following mathematical formula:

𝑚 =

√︃
𝑠𝑒𝑛𝑠𝑜𝑟 [𝑥]2 + 𝑠𝑒𝑛𝑠𝑜𝑟 [𝑦]2 + 𝑠𝑒𝑛𝑠𝑜𝑟 [𝑧]2 (1)

In this way, we ended up having 4 dimensional data from both
accelerometer and gyroscope sensors for all the clapping actions.
We then extracted 11 statistical features from each dimension (41
from each of the sensors). The computed 11 features are: Min (4+4),
Max (4+4), Mode (4+4), Median (4+4), Mean (4+4), Variance (4+4),
Skewness (4+4), Kurtosis (4+4), Correlation (3+3), Abs (3+3), Cosine
similarity (3+3). In this we computed 41 features from accelerometer
and gyroscope sensors each. We then concatenate these 41 features
from each stream and each of the sensors forming a final feature
vector of 82 features.

4.3 Deep Neural Network
The proposed framework is an attempt of solving the problem of
user authentication in client-server architecture such as banking, re-
mote access, etc. In this scenario, the chosen ML classifier is trained
on training samples of multiple users. We chose to develop a Deep
Neural Networks (DNNs) based classification/verification scheme.
To this aim, we searched the best number of layers (from 2 to 10),
the best-required units in each layer (from 32 to 512 with a step
size of 32), and the learning rate (0.01, 0.001, 0.0001). We leveraged
Keras-tuner5 for finding the best parameters of the DNN network
5https://keras.io/keras_tuner/

using grid search. It is worth mentioning that we exploited training
data (with a 33% validation size) for finding the best hyperparam-
eters. We manage to find a 5-layers DNN architecture containing
288, 352, 512, 64 and 32, units, respectively. Additionally, the best
learning rate was found to be 0.0001

4.4 Classification Protocol
In this paper, we deal user authentication to a banking service as
a multi-class classification problem where we train and test out
classifier on the data provided by multiple users. We created 3
datasets based on the clap timings: 2s, 3s, and 4s. The assumption
was to find out empirically how much duration of clapping action
is adequate to authenticate the users. We use 66.67% of the data of
each dataset for training and remaining 33.3% for testing.

4.5 Results
4.5.1 User Authentication. We summarise our classification

results in Figure 3. Figure 3d illustrate the bar charts of our ob-
tained results for different duration of claps. We achieved 94.27%
TAR, 0.296% FAR and an accuracy of ≈ 97% on 2s of clapping data.
Whereas for 3s and 4s duration, the accuracy drops a bit. Thus we
can conclude that 2s of data has very low variance as compared to
3s and 4s durations, respectively. We also show learning curves for
different durations in figures 3a (for 2s), 3b (for 3s) and 3c (for 4s).
It is evident from these figures that classifier did not overfit.

(a) 2s of clap (b) 3s of clap

(c) 4s of clap
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Figure 3: User authentication results



4.5.2 Adversarial Analysis. Despite achieving remarkable
performances, DNN-based systems have been shown to be sus-
ceptible to adversarial examples [18], which are modified versions
of genuine samples intentionally distorted with adversarial noise to
deceive DNNs and cause misclassifications. Evaluating pre-trained
neural network-based systems under adversarial examples is vital
for assessing robustness, revealing vulnerabilities, and minimizing
dependence on the training data distribution. Therefore, our study
also examined the robustness of the user authentication framework
proposed in this research to adversarial examples.

Multiple techniques exist for generating adversarial examples,
as described in Chakraborty et al. [7]. For our research, we utilized
the (FGSM)6, a white-box attack where the attacker has full under-
standing of the model’s framework and components. The FGSM
approach involves introducing a slight change to the input data
through the use of a perturbation, calculated by obtaining the sign
of the model’s loss function gradient with respect to the input data.
The main goal of this attack is to cause incorrect classification of
the perturbed input by the model.

Various methods can be utilized to interpret FGSM attack out-
comes, such as confidence scores, adversarial example visualiza-
tions, feature importance, and accuracy. Nevertheless, accuracy is
the metric that is most frequently employed. If the accuracy of the
classifier on the initial data split is meaningfully higher than that of
the FGSM-created data, it indicates that the classifier is susceptible
to adversarial attacks.
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Figure 4: Results of FGSM using different epsilon values

In Figure 4, we present the results of generating FGSM attacks
on our pre-trained 2s model. We report the results of FGSM attack
on only one model because it worked well (yielded highest accu-
racy) and due to the space limitations. Our findings reveal that the
pre-trained model is resilient to FGSM attack. Accuracy did not
decrease much under different epsilon values. We varied the ep-
silon values for FGSM generation from 0.001 to 0.01, as this range
is more suitable for tabular data. On the other hand, the values
selected for image data range from 0.01 to 1, as reported in [13].
Our solution provides a secure platform for user authentication in
the smartwatch user authentication sector by effectively countering
adversarial attacks/examples.

5 CONCLUSIONS
This article introduces DeepClap, a secure, user-friendly, and re-
silient user authentication mechanism based on behavioral biomet-
rics designed specifically for smartwatches. By using clap-based
6https://pytorch.org/tutorials/beginner/fgsm_tutorial.html

arm movements to register and authenticate the user, DeepClap
takes advantage of the users’ familiarity with the clapping action.
Advanced Deep Neural Network was used to evaluate our proposed
scheme, showing promising results with a high of ≈ 97% accuracy
on 2s of clapping-based arm movements. To test the reliability of
our model further, we subjected it to adversarial analysis using the
Fast Gradient SignMethod (FGSM). Our results show that the model
is robust against different levels of perturbation. In the future, we
plan to develop a proof-of-concept application to apply our find-
ings and evaluate our system’s performance, security, and usability
in different scenarios. Studies have shown that users’ behavioral
patterns vary under different conditions [3], and we plan to test
our system accordingly.
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