
 1

Attribute-Based Encryption for Access Control
in (Real World) Cloud Ecosystems

G. Bartolomeo, CNIT

Abstract— We introduce a distributed, fine-granuled, policy-based resource access control protocol leveraging on Attribute-
Based Encryption and OpenID Connect. We show how the resulting protocol may simplify and secure the whole access control
procedure from the authorization issuer to the resource server, natively providing the desired properties of confidentiality,
integrity, proof of possession and antiforgery.

—————————— ——————————

1 INTRODUCTION

EAL-world Cloud ecosystems massively use token-
based authorization. One of the most popular token

format is JSON Web Tokens (JWT), often used in conjunc-
tion with OAuth 2.0 and OpenID Connect (OIDC). How-
ever, many security aspects are still under discussion. This
paper proposes the introduction of Attribute-Based En-
cryption (ABE), and shows how this choice may streamline
OIDC, achieving a very simple and secure access control
protocol.

2 RELATED WORKS
The original idea behind OAuth 2.0 and its derived speci-
fication OIDC is a simple triangulation between a Client,
an Authorization Server and a Resource Server imple-
mented on top of the HTTP(S) protocol. After trying to ac-
cess a resource, the Client is redirected to the Authoriza-
tion Server, who prompts the user for login & consent. As-
sumed the user logs in and grants the proper authoriza-
tion, the server issues a successfully authentication re-
sponse and redirects to a client provided URI, appending
the issued token as a parameter.

This simple flow, known as “Implicit Grant”, is known to
be vulnerable to token leakage, therefore a slightly more
complex flow named “Authorization Code Flow” is used
in real world cases. In this latter, a third-party provider
registers its Client, obtaining a “Client-id” and a “Secret”.
When a user needs to be identified, the Client generates a
unique session token (“State”). After establishing a TLS
server authentication connection with the Authorization
Server, the Client sends a HTTP GET request specifying the
resource to be accessed (“Scope”), the redirection URL of
the server that will receive the response, an anti-forgery
session token (“State”), and a Nonce to protect the server
against replay attacks. After the user performs login &
consent with the Authorization server, the Client is sent
back to the redirection URL by a HTTP GET request which
includes the “State” parameter, plus a “Code” parameter,
which is a one-time authorization code later exchanged for

1 D. Fett, R. Küsters, and G. Schmitz: The web sso standard OpenID Con-
nect: In-depth formal security analysis and security guidelines. In 2017
IEEE 30th Computer Security Foundations Symposium (CSF), pp. 189–202,
Aug 2017.

an “ID token” (i.e., a token containing the requested user
information) and an the access token (the actual authoriza-
tion credentials). This exchange happens through a HTTP
POST request which includes also the “Client-id” and the
“Secret” preassigned to the client application. The HTTP
POST response contains a signed ID token and signed ac-
cess token embedding the Nonce to prevent reply attacks.
The Client finally retrieves user profile information from
the ID token and may present the access token to the Re-
source Server in a subsequent API call, by including it in
the HTTP “Authorization” request header. As this flow
does not provide the Resource Server with any assurance
on whether the token presenter is the legitimate client or
an attacker, recent RFC 7800 “Proof-of-Possession Key Se-
mantics for JSON Web Tokens” describes a method allow-
ing a Client to present a cryptographically verifiable
“proof-of-possession” together with the token.

3 OUR FORMAL ANALYSIS
A very comprehensive formal model for OIDC is FKS1. The
model was successfully used to discover several attacks.
However, it does not allow automation, requiring manual
theorem proofs. For our investigations, instead, we used
the symbolic model-checker OFMC2 and constructed our
model by relying on only few kinds of channels, abstract-
ing some properties of the HTTP(S) protocol:

• [A] •→• B denotes a “secure” (confidential and
weakly authentic) channel between [A] and B, i.e., [A] can
be sure that only B can read the message, while B can be
sure it comes from [A]. Symbol [A] is used instead of A to
mean that A does not disclose her real identity but a pseu-
donym [A] staying constant during the session (which is
the case for HTTPS without mutual authentication).

• A → B denotes an unencrypted, unauthenticated
channel between the A and B, such as plain HTTP is3.

A number of attacks may come from web attackers, i.e.
attackers who can listen to and send messages from inside
a browser – including those performed through XSS – but

2 The reader may refer to OFMC overview and manual for details. Avail-
able at https://www.imm.dtu.dk/~samo/OFMC-tutorial.pdf last accessed
on 26th May 2023.

3 Other alternatives are possible, and we refer to the OFMC manual for
further details on channel composition

R

2

cannot listen to traffic intended for other processes and
cannot spoof their own address. On the contrary, OFMC is
based on the classical Dolev-Yao intruder model assump-
tions where the attacker can intercept, eavesdrop and forge
any message (without, however, being able to break cryp-
tography). While the Dolev-Yao model is not able to cap-
ture all the complexity of a complete and subtle formal
model such as FKS, we can still model the attacker as effec-
tively able to operate from inside the user’s device, by re-
laxing assuntions on some channels and modelling them
as unsecure, in order to capture at least some (yet unspe-
cific) web attacks. Thus, we assume that, even if HTTPS is
actually used, some steps in the model may use unsecure
channels, allowing the attacker to read and alter some URL
parameters, redirect the browser to websites other than the
intended one, perform CSRFs, etc. We also leave out from
our model user’s login and consent. Clearly, the model
does not capture specific web attacks (e.g., exploiting a
wrong use of redirect messages without stripping sensitive
parameters) nor attacks on end user interfaces (e.g., brute
force against their password) and may even lead to unfea-
sible or unrealistic attacks (that we will discard). Neverthe-
less, it may give a useful insight of the properties of an Au-
thorization Code flow.

Our model specifies the following actions: after a Client
(C) connects to a Resource Provider (RS) in order to get ac-
cess to a given resource (Scope), it is returned a session pa-
rameter (e.g., in a cookie) and redirected to an Authoriza-
tion Server (as). For the sake of simplicity, we assume this
latter is constant and cannot be changed by the user, i.e. a
single Identity Provider is used4. The Client connects to the
Authorization Server passing Scope, State and Nonce pa-
rameters (authorization request). After user login & con-
sent (not modeled), the Client is returned an authorization
response, containing a token, which is a trapdoor function
of passed parameters: code(Scope,State,Nonce). Next, the
Client exchanges the code for a token at the token endpoint
(part of the Authorization Server) using a secure channel.
The token is digitally signed by the Authorization Server
and contains the list of resources the user has authorized
access to. Finally, the Client goes back to the Resource Pro-
vider to spend the token.

It is very relevant to look at the token model. The re-
turned token is indeed a function of the code, which, in
turn is a function of the original Scope, State and Nonce
parameters. The token thus contains the resources the user
has authorized access to and the Nonce parameter. How-
ever, while the Client knows in advance the Nonce parame-
ter, but has no information on which resources the user has
authorized access to, the Resource Server does not know in
advance any of these. It is blind to this information: when the
token is presented, the Resource Server does not know

4 This implies that the checker will not be able to detect attacks such as
Identity Provider Mix-up.

5 In some implementations, this check is possible by using a back channel
between the Resource Provider and the Authorization Server (implement-
ing an “Introspection endpoint”). However, this is not part of the standard
OAuth 2.0 protocol.

6 Note that parameter Scope is returned as well in the authorization re-
sponse. This is not needed by the OIDC specifications, however it is used
in our model to avoid the checker detecting a trivial reply attack with the

whether and which resources the user has authorized ac-
cess to, nor whether the Nonce value is correct, even if this
information is written in the token5. The Resource Server
limits to trust the token signature.

As regarding desired security objectives, we specify the
following:
i) The Resource Server must authenticate the Client using,
other than the session parameter, the information con-
tained in the token that it is able to acknowledge; ii) Vi-
ceversa, the Client authenticates the Resource Server on the
specific data it returns, which, furthermore, should be kept
confidential; iii) The Client authenticates the Authoriza-
tion Server authorization response by checking the State
parameters and both agreeing on the returned (user au-
thorized) code and Scope6; iv) at the token endpoint, the
Authorization Server must authenticate the Client via its
registered identity and password and the code parameter7.
To study the effect of parameters leakage and injection
(which in real world may happen in several ways), we in-
vestigate the effect of having authorization request and re-
sponse transmitted under unsecure channels8. Running the
model checker up to 2 simultaneous runs, we found, as ex-
pected, the very well-known code injection attack. Without
protecting any of the two messages, Client’s parameters in-
jection is possible making the Client retrieving a wrong

response message.
7 The usual reccomandation is that the code parameter is one-time-usa-

ble, “short-living” (max 10 minutes lifespan) and “sufficiently” random. In
our formal model, we relax this assumption and accept that code parame-
ters may even be occasionally reused.

8 In fact, while they may be transmitted under HTTPS, the presence of a
potential untrusted element in the user agent (e.g., a malicious script in the
web browser able to read the browser’s URL bar or access the browser’s
logs) may make these connections formally unsecure.

Protocol: OIDC_AuthCodeFlow

Types: Agent as, #Authorization Server (constant)
 RS, #Resource Server
 C; #Client
 Function pw, #shared password between as and C
 pk, #as public key
 resource, #user authorized resource to be accessed
 code, #authorization code
 hash; #PKCE trapdoor function
 Number Scope, #OIDC AuthCodeFlow parameter
 State, #OIDC AuthCodeFlow parameter
 Nonce, #OIDC AuthCodeFlow parameter
 Data, #RS returns this data on successfulauthorization
 Session, #shared session between RS and C
 Verifier; #Verifier used in PKCE

Knowledge:
 as: as,pk(as),inv(pk(as)),C,pw(as,C),code,resource,hash;
 RS: RS,as,pk(as);
 C: C,RS,pk(as),pw(as,C),hash,pk(C),inv(pk(C));
 where RS!=C, RS!=as, C!=as

Actions:
C->RS:Scope
RS*->C:Scope,as,Session

[C]*->*as: RS,Scope,State,Nonce,hash(Verifier)
as->[C]: State,code(Scope,State,Nonce),Scope

[C]*->*as:C,pw(as,C),code(Scope,State,Nonce),Verifier,
 pk(C),{RS,Scope,pk(C)}inv(pk(C)) #DPoP proof
as*->[C]:{resource(code(Scope,State,Nonce)),C,as,RS,Nonce,pk(C)}inv(pk(as)),
 code(Scope,State,Nonce) #this channel is no more confidential

[C]*->*RS:{resource(code(Scope,State,Nonce)),C,as,RS,Nonce,pk(C)}inv(pk(as)),
 Session,{RS,Scope,pk(C)}inv(pk(C))
RS*->*[C]:Data,Session

Goals:
RS authenticates C on RS,resource(code(Scope,State,Nonce)),
 C,as,Session,{RS,Scope,pk(C)}inv(pk(C))
C authenticates RS on Data
Data secret between RS,C
C authenticates as on State,Scope,code(Scope,State,Nonce)
as weakly authenticates C on C,pw(as,C),code(Scope,State,Nonce)

Fig. 1. OpenID Connect Authorization Code Flow implementing Proof
Key for Code Exchange (PKCE) and Demonstrating Proof-of-Posses-
sion (DPoP), modeled in AnB specifications language.

 3

code. Later, this makes the Client retrieving a different to-
ken than the one expected, allowing access to a different
resource than the intended one. Noticeably, this happens
through a violation of the third security goal (not the first
one!) because the Resource Server does not formally know
whether and which resources the user has authorized ac-
cess to (hence, no violation of the first goal). If either only
the authorization request or the authorization response is
protected, a code or Nonce injection is respectively possi-
ble. However, assumed the Client properly checks the re-
turned Nonce in the token, the flow alts without any prej-
udice to the user other than a denial of service.
As an alternative to the use of a Nonce, we explored the
effect of introducing PKCE. PKCE is the ability for a Client
to send a “Challenge” to the authorization endpoint that
the Authorization Server may later verify, through a “Ver-
ifier”, sent to the Token endpoint. We assume that the
Challenge is simply a hash of the Verifier parameter and
make the returned authorization code a trapdoor function
of it9: code(Scope,State,Nonce, hash(Verifier)). This time an
attack is only possible when neither the authorization re-
quest nor the response is protected. The attacker alters the
Client parameter but presents the correct PKCE Challenge
to obtaing a wrong code, which is later exchanged for a
(wrong) token by the Client10.

We finally investigated the effects of leaking a token.
This clearly affects the first goal, as an attacker may imme-
diately use the token to access a protected resource from
the Resource Server. Introducing the Proof-of-Possession
as described in a popular Internet draft11, will finally result
in a secure flow till 2 simultanous runs. This result holds
as long as the presented token signature is over sufficient
parameters to make it prevent reply attacks (in the model
reported in Figure 1 we included the Client’s public key,
the Resource Server address, the Scope parameter).

4 INTRODUCING ATTRIBUTE-BASED ENCRYPTION
Note that the use of PKCE creates a session between the
Authorization Endpoint and the Token Endpoint, by rely-
ing on the Client; similarly, a DPoP proof creates a session
between the Token Endpoint and the Resource Server.
PKCE and DPoP, essentially, exactly solve the same prob-
lem: they create a distributed session between the Client,
the Authorization Server and the Resource Server, where
the semantics specified inside a JWT shall be enforced. Can
we redesign a flow by handling over most part of verifica-
tions, decisions and enforcement to the cryptographic
layer? End-to-end cryptography may be introduced to
avoid attacker intrusion between the Authorization Server
and the Client. In Identity-Based Encryption (IBE) any
party may generate a public key from a known identity
value (i.e., an ASCII string or an URI) – assumed they know

9 From the specifications: “Typically, the "code_challenge" and "code_chal-
lenge_method" values are stored in encrypted form in the "code" itself but could
alternatively be stored on the server associated with the code. The server MUST
NOT include the "code_challenge" value in client requests in a form that other
entities can extract”.

10 This scenario is called “Stronger Attacker Model” in Daniel Fett’s arti-
cole “PKCE vs. Nonce: Equivalent or Not?”, https://dan-
ielfett.de/2020/05/16/pkce-vs-nonce-equivalent-or-not/ last accessed on

a “Master Public Key” (MPK) provided by a Key Genera-
tor. Private keys are issued by the Generator and shipped
to the parties. In our case, assumed the Generator is imple-
mented inside the Authorization Server, each Client may
register once with its own URI and receive its Client pri-
vate key. The Authorization Server may later ship en-
crypted tokens to any Client, knowing its registration URI.
IBE therefore may be used to implement end-to-end en-
cryption between the Authorization Server and the Client.
More in general, CiphertextPolicy Attribute-Based Encryp-
tion (CP-ABE) enables secret keys to be associated with a
set of attributes and ciphertexts being calculated using an
“access policy” over attributes. A client can decrypt a ci-
phertext if there is a "match" between the policy and its
own set of attributes embedded in its key. Leveraging on
CP-ABE, we assume an Authorization Server is able to ex-
ecute the ABE set-up algorithm for CP-ABE, generating the
corresponding master public key MPK and master secret
key MSK. The Authorization Server is also able to generate
client’s secret keys based on a set of attributes and to per-
form CP-ABE encryption. Also, we assume that the Re-
source Server is able to encrypt data using CP-ABE (i.e., it
knows the master public key MPK generated by the Au-
thorization Server). Finally, we assume that the Client has
received from the Authorization Server – just once at
startup, using a secure channel – a Client’s key k=SKMSK,{c},
which is a CP-ABE key generated by the server using the
Client’s identifier12 c as a single attribute (IBE-style fash-
ion):

𝑆 = {𝑐} (1)

𝐴𝑆 → 𝐶𝑙: 𝑘 = 𝑆𝐾 , = 𝑆𝐾 ,{ } (2)

 The protocol begins with the Client requesting the Re-
source Server to access a protected resource r on behalf of
an end-user u.

𝐶𝑙 → 𝑅𝑆: {𝑢, 𝑟} (3)

where is the user’s identifier and is the target resource
identifier. The Resource Server generates a secret x for the
resource to be accessed and encrypts it using the following
access structure A:

𝐴 = 𝑖 ⋀ 𝑐 ⋀𝑎⋀𝑢 ⋀𝑟 ⋀(𝑡 < 𝑓) (4)

where i (for “issuer”) is the identifier of the Authorization
Server, a (for “audience”) is the identifier associated to the
Resource Server, t is a timestamp attribute and f is an expi-
ration time. The resulting ciphertext {x}MPK,A. is further en-
crypted to the Client, using A’, an access structure made of
only one attribute, i.e. the Client’s identifier.

𝐴 = {𝑐} (5)

𝑧 = {{𝑥} , } , = {{𝑥} , } ,{ } (6)

26th December 2021.
11 “OAuth 2.0 Demonstrating Proof-of-Possession”, Internet draft,

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop last accessed
on 26th May 2023.

12 In practice, however, a second temporal attribute is used inside the
access structure, so that the Client’s key may be periodically – e.g. weekly,
daily or hourly – renewed in order to improve security.

4

The ciphertext z and the identifier of the Authorization
Server i are returned to the Client.

𝑅𝑆 → 𝐶𝑙: {𝑧, 𝑖} (7)

The Client issues a nonce m and redirects to the Authoriza-
tion Server.

𝐶𝑙 → 𝐴𝑆: {𝑐, 𝑎, 𝑟, 𝑚} (8)

Following, the user is prompted to authenticate with the
Authorization Server through any supported method and
may authorize (or partially authorize) the Client’s request
(“login & consent” procedure). As a result of this authori-
zation, the Authorization Server generates a correspond-
ing CP-ABE secret key e=SKMSK,S (henceforth ephemeral key)
from the following set of attributes

𝑆 = {𝑖, 𝑐, 𝑎, 𝑢, 𝑟, 𝑟 , … , 𝑟 , 𝑡} (9)

where r, r’, …, rn are n different identifiers associated to the
resource(s) the user has authorized access (should include
r), and t is the timestamp attribute. Finally, the key e and
the nonce m are encrypted to the Client and the ciphertext
p is returned:

𝐴𝑆 → 𝐶𝑙: 𝑝 = {𝑒,𝑚} , = {𝑒,𝑚} ,{ } (10)

Using its key k, the Client can now decrypt this ciphertext
and obtain the nonce m and ephemeral key e.

{𝑒, 𝑚} = {𝑝} (11)

After checking the nonce m is correct, owing both its own
key k=SKMSK,{c} and the ephemeral key e=SKMSK,S, the Client can
finally decrypt the secret:

𝑥 = {{𝑧} } (12)

Note that, thanks to the native end-to-end encryption, all
steps right now do expose parameters under the attacker’s
control and do not need any security measure on the trans-
mission channel (except ensuring the authenticity of the
Challenge), making the flow suitable for redirection-based
protocols like OIDC.

As a last step, the Client repeats the original request to the
Resource Server, this time presenting the decrypted secret
x:

𝐶𝑙 → 𝑅𝑆: {𝑢, 𝑟, 𝑐, 𝑥} (13)

The Resource Server checks the secret presented by the Cli-
ent, and, in case of a positive match, grants access to the
requested resource13.

Checking the above protocol with OFMC (Figure 2), the
model specifies the following goals: i) The Resource Server
must authenticate the Client using the Secret encrypted in
the Challenge; ii) viceversa, the Client authenticates the Re-
source Server on the specific data it returns, which, further-
more, should be kept confidential; iii) The Client authenti-
cates the Authorization Server’s authorization code re-
sponse by checking the Scope and Nonce parameters. Note

13 To improve performance, the Resource Server may choose to setup a
session with the Client and store the secret associated to the resource, the
same mechanism may be used Client side until the expiration time is not

that the model does not specify any Client’s authentication
at the Authorization Server, anyone can request an en-
crypted ephemeral key claiming any Client’s identity (just
as anyone can request an authorization code at an Author-
ization Endpoint). However, as it is possible to verify using

OFMC, it is fundamental that the Nonce parameter is re-
turned to and checked by the Client, otherwise a reply at-
tack exploiting the returned ephemeral key might occur.
Using this countermeasure, the flow proves to be formally
secure (till two simultaneous runs).

5 CONCLUSION AND FUTURE WORK
Cloud computing has deeply changed our human soci-

ety enabling a paradigm where data are processed on var-
ious distributed servers across the Internet, typycally de-
veloped around identity and platform provider. Secure ac-
cess to this data is a primary problem. Using a model
checker, we formally reviewed one of the most popular ac-
cess control protocol, OpenID Connect. Then, we showed
how the security of this protocol might be streamlined by
the introduction of Attribute-Based Encryption. Due to
space constraints, details, performance evaluation and a
more extended state-of-the-art review were omitted in the
compat edition of this paper. The reader is invited to refer
to the full draft14.

elapsed.
14 Available at https://t.co/naROuymJTh, last accessed on 26th May 2023.

Protocol: OIDC_Implicit_ABE

Types: Agent as, #Authorization Server (constant)
 RS, #Resource Server
 C, #Client
 Scope; #Dummy agent modeling "Scope" parameter
 Function h, #as generated ephemeral key
 pk, #as generated Client's key
 resource; #user authorized resource to be accessed
 Number State, #OIDC AuthCodeFlow parameter
 Code, #OIDC AuthCodeFlow parameter
 Nonce, #OIDC AuthCodeFlow parameter
 Challenge, #challenge-response parameter
 Data, #RS returns this data on successfulauthorization
 Session; #shared session between RS and C

Knowledge:
 as: as,C,RS,Scope,pk(C),inv(h(C,as,RS,Scope));
 RS: RS,as,C,Scope,
 #Apparently, RS must know pk(C),h(C,as,RS,Scope).
 #However, in ABE these are trivially computed
 #from ABE master public key.
 pk(C), h(C,as,RS,Scope);
 C: C,RS,pk(C),inv(pk(C)),h,Scope;
 where RS!=C, RS!=as, C!=as

Actions:
C->RS: Scope
RS*->C: as,{{Challenge}h(C,as,RS,Scope)}pk(C)

C->as: C,RS,Scope,Nonce
as->C: {inv(h(C,as,RS,Scope)),Nonce}pk(C)

[C]*->*RS: Scope,Challenge,Session
RS*->*[C]: Data,Session

Goals:
C authenticates as on C,RS,Scope,Nonce
RS authenticates C on Challenge
C authenticates RS on Data
Data secret between RS,C

Fig. 2. Proposed OpenID Connect flow using Attribute-Based Encryp-
tion. Due to OFMC limitations, we did not consider master keys and key
generations, rather we used two precomputed sets of traditional asym-
metric keys, one for the client’s key {pk(B), inv(pk(SP))} and the second
one for the ephemeral key {h(B,idp,SP,Scope), inv(h(B,idp,SP,Scope))}.
As a simplicifcation, the ephemeral key does not contain attributes re-
lated to the current user and time. Also, the parameter Scope is given
the role of “Agent”, as no key in OFMC can be associated to a parameter
of type “Number” (nevertheless, the checker handles the Scope param-
eter as any other variable).

