
©	2017	Arm	Limited	

Creating	Formal	
Specifications	of	Real	

World	Artifacts
Alastair	Reid

Arm	Research

@alastair_d_reid

©	2017	Arm	Limited	2

Overview

1. What’s	different	about	Real	World	Artifacts?	

2. ARM’s	formal	processor	specifications	

• Three	experiences	

• Lessons	learned	

3. Conclusions

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016	
“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016	
“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017	

https://alastairreid.github.io/papers/

https://alastairreid.github.io/papers/

©	2017	Arm	Limited	3

ARM

Designs	processors	

Designs	architecture	

Licenses	architecture	

16B	processors	/	year	

(also	GPUs,	IoT,	…)

©	2017	Arm	Limited	4

Real	World	Artifacts

Linux	Kernel,	C	compilers,	ARM	processors,	TCP/IP,	WiFi,	etc.		

-	Multiple	implementations,	suppliers,	versions,	configurations	

-	Important:	commercial,	security,	…	

-	Long	history,	initial	spec	informal	

-	Formal	spec	not	100%	welcome	

-	Backwards	compatibility	requirements	

-	Spec	must	include	all	quirks	of	recent	versions	of	major	implementations	to	be	useful	

-	Conformance	suites?

©	2017	Arm	Limited	5

Current	status	of	ARM	specifications

-	Formal	specifications	of	A,	R	and	M-class	processor	classes	exist	
-	Integrated	into	ARM’s	official	processor	specifications	
-	Maintained	by	ARM’s	architecture	team	
-	Used	by	multiple	teams	within	ARM	
-	Formal	validation	of	ARM	processors	using	Bounded	Model	Checking	
-	Development	of	test	suites	
-	Designing	architecture	extensions	
-	…	

-	Publicly	released	in	machine	readable	form

©	2017	Arm	Limited	

Creating	trustworthy	
specifications

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016

©	2017	Arm	Limited	7

The	state	of	most	processor	specifications

Large	(1000s	of	pages)	

Broad	(10+	years	of	implementations,	multiple	manufacturers)	

Complex	(exceptions,	weak	memory,	…)	

Informal	(mostly	English	prose)	

Pseudocode	(10000s	of	lines)	

We	are	all	just	learning	how	to	(retrospectively)	formalize	specifications

©	2017	Arm	Limited	8

Unstructured	English	Prose	(A-class	spec)

©	2017	Arm	Limited	9

Semi-structured	English	prose	(M-class	spec)

©	2017	Arm	Limited	10

Tables	-	semistructured,	not	machine	readable

©	2017	Arm	Limited	11

Registers	-	structured,	machine-readable

©	2017	Arm	Limited	12

Pseudocode

©	2017	Arm	Limited	12

Pseudocode
Type Inference

Dependent Types

Enumerations

Unbounded Integers

Bit Vectors

Indentation-based Syntax

Imperative

Exceptions

©	2017	Arm	Limited	13

Status	at	the	start

- No	tools	(parser,	type	checker)	
- Incomplete	(around	15%	missing)	
- “Document	by	comment”	
- Many	trivial	errors	(that	confuse	tools	but	not	humans)	
- Unexecuted,	untested	
- Scepticism	that	executing	spec	is	

- Possible	
- Desirable	
- Would	compromise	important	aspects	of	specification

©	2017	Arm	Limited	14

Architectural	Conformance	Suite

Processor	architectural	compliance	sign-off	

Large	

• v8-A	11,000	test	programs,	>	2	billion	instructions	

• v8-M	3,500	test	programs,	>	250	million	instructions	

Thorough	

• Tests	dark	corners	of	specification

©	2017	Arm	Limited	15 ©	2017	Arm	Limited	

Progress	in	testing	Arm	specification

- Does	not	parse,	does	not	typecheck

- Can’t	get	out	of	reset

- Can’t	execute	first	instruction

- Can’t	execute	first	100	instructions

- …

- Passes	90%	of	tests

- Passes	99%	of	tests

- …

0

50

100

©	2017	Arm	Limited	16

Measuring	architecture	coverage	of	tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

ARMResearch

Creating a Virtuous Cycle

17

ARM	
Spec

Fuzzing	
Firmware

ARM	
Conformance	
TestSuite

Processor	
Verificanon

Boot	
OS

Informanon	
Flow	

Analysis

Random	
Instrucnon	
Sequences

Testcase	
Generanon

Specificanon	
Verificanon

©	2017	Arm	Limited	18

Lessons	(Part	1)

-	Specifications	contain	bugs	

-	Huge	value	in	being	able	to	run	existing	test	suites	

-	Need	to	balance	against	benefits	of	non-executable	specs	

-	Find	ways	to	provide	direct	benefit	to	other	users	of	spec	

-	They	will	do	some	of	the	testing/debugging	for	you	

-	They	will	support	getting	your	changes/spec	adopted	as	master	spec	

-	Creates	Virtuous	Cycle

©	2017	Arm	Limited	

Formal	validation	
of	processors

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

©	2017	Arm	Limited	20

Formal/Testing	framework	(deterministic	specs)

Implementation

Specification

Stimulus ?	==	?

Test	vectors	
Bounded	model	checker	
…

©	2017	Arm	Limited	21

Formal/Testing	framework	(non-deterministic	specs)

Implementation

Specification

Stimulus

ARMResearch

Checking	an	instrucnon

22

ADD

ARMResearch

Checking	an	instrucnon

22

ADDCMP LDR STR BNE

Context

ARMResearch

Specifying ADD

assign ADD_retiring = (pre.opcode & 16'b1111_1110_0000_0000)

 == 16'b0001_1000_0000_0000;

assign ADD_result = pre.R[pre.opcode[8:6]] + pre.R[pre.opcode[5:3]];

assign ADD_Rd = pre.opcode[2:0];

assert property (@(posedge clk) disable iff (~reset_n)

 ADD_retiring |-> (ADD_result == post.R[ADD_Rd]));

23

ARMResearch 24

Combinational
Verilog

ASL to
Verilog

Architecture
Specification

Specialize	
Monomorphize	

Constant	Propagation	
Width	Analysis	

Exception	Handling	
…

©	2017	Arm	Limited	25

Arm	CPUs	verified	with	ISA-Formal

A-class	

Cortex-A53	

Cortex-A32	

Cortex-A35	

Cortex-A55	

Next	generation

R-class	

Cortex-R52	

Next	generation

M-class	

Cortex-M4	

Cortex-M7	

Cortex-M33	

Next	generation

Cambridge	Projects

Rolling	out	globally	to	other	design	centres	

Sophia,	France	-	Cortex-A75	(partial)	

Austin,	USA	-	TBA	

Chandler,	USA	-	TBA

©	2017	Arm	Limited	26

Lessons	Learned	(part	2)

-	Very	effective	way	to	find	bugs	in	implementations	

-	Very	effective	at	finding	bugs	in	spec	

-	Try	to	find	most	of	the	bugs	in	your	spec	before	you	start	

-	Huge	value	in	being	able	to	use	spec	to	validate	implementations	

-	Helps	get	formal	spec	adopted	as	part	of	official	spec	

-	Justifies	investment	in	spec	by	implementors	

©	2017	Arm	Limited	

Formal	validation	
of	specifications

“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications”	OOPSLA	2017

©	2017	Arm	Limited	28

One	Specification	to	rule	them	all?

Architecture	Spec

Compliance	Tests

Processors

Reference	Simulator

©	2017	Arm	Limited	29

One	Specification	to	rule	them	all?

Pro	

-	Authoritative	

-	Easier	to	maintain	

Con	

-	No	redundancy	

-	Extending	specification	is	harder

©	2017	Arm	Limited	30

Creating	a	redundant	specification

Where	to	get	a	list	of	redundant	properties	from?	

How	to	formalise	this	list?	

How	to	formally	validate	specification	against	properties?	

(This	may	look	familiar	from	formal	specification	of	software)

©	2017	Arm	Limited	31

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

©	2017	Arm	Limited	31

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

©	2017	Arm	Limited	31

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

And	cannot	happen	any	other	way

©	2017	Arm	Limited	31

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

Rule	R:				X	→	A	∨	B	∨	C	∨	D

And	cannot	happen	any	other	way

©	2017	Arm	Limited	32

State	Change	X Exit from lockup Fell(LockedUp)

Event	A A Cold reset Called(TakeColdReset)

Event	B A Warm reset Called(TakeReset)

State	Change	C Entry to Debug state Rose(Halted)

Event	D Preemption by a higher
priority processor
exception

Called(ExceptionEntry)

©	2017	Arm	Limited	33

“Eyeball	Closeness”

Rule JRJC
Exit from lockup is by any of the following:

• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor

exception.

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

©	2017	Arm	Limited	34

Rule VGNW
Entry to lockup from an exception causes
• Any Fault Status Registers associated with the exception

to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

Out	of	date
Misleading

Ambiguous
Untestable

©	2017	Arm	Limited	35

Counterexample

v8-M Spec Rules

Convert Z3	
SMT	
Solver

+

~10,000	lines ~1,000,000	lines

©	2017	Arm	Limited	36

Results	(more	in	OOPSLA	paper)

Most	properties	proved	in	under	100	seconds	

Found	12	bugs	in	specification:	

-	debug,	exceptions,	system	registers,	security	

Found	bugs	in	English	prose:	

-	ambiguous,	imprecise,	incorrect,	…

©	2017	Arm	Limited	37

Lessons	Learned	(part	3)

-	Redundancy	essential	for	detecting	errors	

-	Need	set	of	‘orthogonal’	properties	

-	Invariants	

-	Security	properties	

-	Reachability	properties	

-	etc.	

-	Eyeball	closeness

©	2017	Arm	Limited	38

Creating	Formal	Specifications	of	Real	World	Artifacts

Spec	

Plan	for	adoption	into	official	specs	

Test	your	specification	

Build	a	virtuous	cycle	

-	What	is	“killer	app”	of	your	spec?	

Formally	validation	of	implementations?		

-	Look	for	early	adopters	

-	Ensure	specifications	have	many	uses	

			Don’t	write	spec	in	Coq/HOL/ACL2/…	

Create	redundant	specifications

Thank	You!	
Danke!	
Merci!	
谢谢!	
ありがとう!	
Gracias!	
Kiitos!

©	2017	Arm	Limited	39

@alastair_d_reid

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016

“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

