

IM-DISCO: Invariant Mining for Detecting IntrusionS in Critical Operations

GUILHERME SARAIVA 1, **FILIPE APOLINÁRIO 1**, MIGUEL L. PARDAL 2 INOV INESC INOVAÇÃO 1, INESC-ID 2, Instituto Superior Técnico (IST), Lisboa

CPS4CIP 2023, Hague, Netherlands - 28, Sep., 2023

Cyber-Physical Systems

I**∩**⊚V

Monitor and control physical processes

Contained in Critical Infrastructures

- Transportation Networks

Cyber-Physical Systems

Monitor and control physical processes

Contained in Critical Infrastructures

- Transportation Networks

Vulnerable to cyber-physical attacks

- Ex: **Ransomware** attack on a railway in Denmark

Access the actuators to disrupt operations

Vulnerable to cyber-physical attacks

- Ex: **Ransomware** attack on a railway in Denmark

Access the actuators to disrupt operations

Vulnerable to cyber-physical attacks

Ex: **Ransomware** attack on a railway in Denmark -

Access the actuators to disrupt operation

Vulnerable to cyber-physical attacks

Ex: **Ransomware** attack on a railway in Denmark -

Access the actuators to disrupt operation

monitor

control

Train cyber-physical system

Train cyber-physical system

9

Sensors - velocity

- acceleration
- temperature
-

-

-

Cyber-Physical Systems - Example

Train cyber-physical system

10

Train cyber-physical system

Operational Modes

11

- Riding
- arriving station
- on station
- leaving station

Train cyber-physical system

Operational Modes

- riding
- arriving station
- on station
- leaving station

Train cyber-physical system

Operational Modes

- riding
- arriving station
- on station
- leaving station

Train cyber-physical system

Operational Modes

- riding
- arriving station
- on station
- leaving station

Train cyber-physical system

Operational Modes

- riding
- arriving station
- on station
- leaving station

Train cyber-physical system

Operational Modes

- riding
- arriving station
- on station
- leaving station

Intrusion Detection Systems

Passively collects and analyzes different data source

Anomaly Detectors:

- [+] Detect novel attacks
- [-] Incomprehensible alarms

Intrusion Detection Systems

Passively collects and analyzes different data source

Anomaly Detectors:

- [+] Detect novel attacks
- [-] Incomprehensible alarms

Physical conditions that must be sustained to maintain the normal functioning of the system

Anomaly - process value that violates the rules

Ex:

(velocity > 20m/s ∧ station_distance > 40m) ∨ (station_distance < 40m) ⇒ brakes = ON

Physical conditions that must be sustained to maintain the normal functioning of the system

Anomaly - process value that violates the rules

Ex:

(velocity > 20m/s ∧ station_distance > 40m) ∨ (station_distance < 40m) ⇒ brakes = ON

Physical conditions that must be sustained to maintain the normal functioning of the system

Anomaly - process value that violates the rules

Ex:

(velocity > 20m/s ∧ station_distance > 40m) ∨ (station_distance < 40m) ⇒ brakes = ON

I**∩**@V

Physical conditions that must be sustained to maintain the normal functioning of the system

Anomaly - process value that violates the rules

Ex:

(velocity > 20m/s ∧ station_distance > 40m) ✓ (station_distance < 40m) ⇒ brakes = ON

I**∩**@V

Physical conditions that must be sustained to maintain the normal functioning of the system

Anomaly - process value that violates the rules

Ex:

(velocity > 20m/s ∧ station_distance > 40m) ∨ (station_distance < 40m) ⇒ brakes = ON

I**∩**@V

Physical conditions that must be sustained to maintain the normal functioning of the system

Anomaly - process value that violates the rules

Ex:

(velocity > 20m/s ∧ station_distance > 40m) ∨ (station_distance < 40m) ⇒ brakes = ON

velocity = 26m/s, station_distance = 50, brakes = OFF, ... ANOMALY!!

Complex rules may difficult the interpretation of the alarm

Ex:

(velocity > 20m/s \land station_distance >= 40m \land acceleration > 1m/s² \land doors = OFF) \lor (station_distance < 40m \land acceleration <= 1m/s²) \lor (station_distance = 0m \land doors = ON \land velocity = 0m/s \land acceleration = 0m/s²) \Rightarrow brakes = ON

Complex rules may difficult the interpretation of the alarm

Ex:

(velocity > 20m/s \land station_distance >= 40m \land acceleration > 1m/s² \land doors = OFF) \lor (station_distance < 40m \land acceleration <= 1m/s²) \lor (station_distance = 0m \land doors = ON \land velocity = 0m/s \land acceleration = 0m/s²) \Rightarrow brakes = ON

Complex rules may difficult the interpretation of the alarm

Ex:

(velocity > 20m/s \land station_distance >= 40m \land acceleration > 1m/s² \land doors = OFF) \lor (station_distance < 40m \land acceleration <= 1m/s²) \lor (station_distance = 0m \land doors = ON \land velocity = 0m/s \land acceleration = 0m/s²) \Rightarrow brakes = ON

Complex rules may difficult the interpretation of the alarm

Ex:

(velocity > 20m/s \land station_distance >= 40m \land acceleration > 1m/s² \land doors = OFF V (station_distance < 40m \land acceleration <= 1m/s²) \lor (station_distance = 0m \land doors = ON \land velocity = 0m/s \land acceleration = 0m/s²) \Rightarrow brakes = ON

Complex rules may difficult the interpretation of the alarm

Ex:

(velocity > 20m/s \land station_distance >= 40m \land acceleration > 0m/s² \land doors = OFF) \lor (station_distance < 40m \land acceleration >= 0m/s²) \lor (station_distance = 0m \land doors = ON \land velocity = 0m/s \land acceleration = 0m/s²) \Rightarrow brakes = ON

Complex rules may difficult the interpretation of the alarm

Ex:

(velocity > 20m/s \land station_distance >= 40m \land acceleration > 0m/s² \land doors = OFF) \lor (station_distance < 40m \land acceleration >= 0m/s²) \lor (station_distance = 0m \land doors = ON \land velocity = 0m/s \land acceleration = 0m/s²) \Rightarrow brakes = ON

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

doors = ON \land velocity < 1m/s \land brakes = ON \Rightarrow M = on_station

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

doors = ON \land velocity = 0m/s \land brakes = ON , \land distance=0 \Rightarrow M = on_station

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

doors = ON \land velocity = 0m/s \land brakes = ON , \land distance=0 \Rightarrow M = on_station

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

doors = ON \land velocity = 0m/s \land brakes = ON , \land distance=0 \Rightarrow M = on_station

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

doors = ON \land velocity = 0m/s \land brakes = ON , \land distance=0 M = on_station

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

 $\begin{array}{l} \mbox{doors} = \mbox{ON } \wedge \ \mbox{velocity} = \mbox{Om/s} \ \wedge \ \mbox{brakes} = \mbox{ON }, \wedge \ \mbox{distance=0} \Rightarrow \\ M = \mbox{on station} \\ \mbox{doors} = \mbox{OFF } \wedge \ \mbox{velocity} > \mbox{Om/s} \ \wedge \ \mbox{acceleration} > \mbox{Om/s} \ \wedge \ \mbox{brakes} = \mbox{OFF }, \wedge \\ \mbox{distance<40} \Rightarrow \ \ \mbox{M} = \mbox{leaving station} \\ \mbox{doors} = \mbox{OFF } \wedge \ \mbox{Om/s} \ < \mbox{velocity} < \mbox{20m/s} \ \wedge \ \mbox{distance} > \mbox{40} \Rightarrow \ \ \mbox{M} = \mbox{riding} \\ \mbox{doors} = \mbox{OFF } \wedge \ \mbox{velocity} > \mbox{Om/s} \ \wedge \ \mbox{distance} < \mbox{40} \Rightarrow \ \ \mbox{M} = \mbox{riding} \\ \mbox{doors} = \mbox{OFF } \wedge \ \mbox{velocity} > \mbox{Om/s} \ \wedge \ \mbox{acceleration} > \mbox{Om/s}, \ \wedge \ \mbox{distance} < \mbox{40} \Rightarrow \ \ \mbox{M} = \\ \mbox{reaching station} \end{array}$

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

 $\begin{array}{l} doors = ON \ \land \ velocity = 0m/s \ \land \ brakes = ON \ , \ \land \ distance=0 \Rightarrow \\ M = on_station \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ brakes = OFF \ , \ \land \ distance<40 \Rightarrow \ M = leaving \ station \\ \hline doors = OFF \ \land \ 0 \ m/s < velocity < 20m/s \ \land \ distance>40 \Rightarrow \ M = riding \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ distance<40 \Rightarrow \ M = riding \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ distance<40 \Rightarrow \ M = riding \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ distance<40 \Rightarrow \ M = riding \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ distance<40 \Rightarrow \ M = riding \\ \end{array}$

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

doors = ON \land velocity = 0m/s \land brakes = ON, \land distance=0 \Rightarrow M = on_station doors = OFF \land velocity > 0m/s \land acceleration>0m/s \land brakes = OFF, \land distance<40 \Rightarrow M = leaving station doors = OFF \land 0 m/s < velocity < 20m/s \land distance>40 \Rightarrow M = riding doors = OFF \land velocity > 0m/s \land acceleration>0m/s, \land distance<40 \Rightarrow M = reaching station

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

 $\begin{array}{l} doors = ON \ \land \ velocity = 0m/s \ \land \ brakes = ON \ , \land \ distance=0 \Rightarrow \\ M = on_station \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ brakes = OFF \ , \land \\ distance<40 \Rightarrow \ M = leaving \ station \\ doors = OFF \ \land \ 0 \ m/s < velocity < 20m/s \ \land \ distance>40 \Rightarrow \ M = riding \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ distance<40 \Rightarrow \ M = riding \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ distance<40 \Rightarrow \ M = riding \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ distance<40 \Rightarrow \ M = riding \\ doors = OFF \ \land \ velocity > 0m/s \ \land \ acceleration>0m/s \ \land \ distance<40 \Rightarrow \ M = reaching \ station \\ \end{array}$

Creation of invariants for modeling the observable operation mode of the CPS

doors = OFF \land velocity = 0m/s \land brakes = ON, M = on_station

Creation of invariants for modeling the observable operation mode of the CPS

Ex:

doors = OFF \land velocity = 30 m/s \land brakes = OFF, M = riding

Provides invariant rules for inferring operational modes within CPS

Allows the detection of anomalies that can be verified by human experts

IM-DISCO Invariant rule mining

Two main phases:

- Predicate Generation
- Invariant Rule Mining

IM-DISCO Invariant rule mining

Two main phases:

- Predicate Generation
- Invariant Rule Mining

IM-DISCO Invariant rule mining

Two main phases:

- Predicate Generation
- Invariant Rule Mining

Velocity=20m/s, acceleration=2m/s; riding Velocity=20m/s, acceleration=3m/s; riding

Two main phases:

- Predicate Generation
- Invariant Rule Mining

Two main phases:

- Predicate Generation
- Invariant Rule Mining

distance<40m (leaving station)

Two main phases:

- Predicate Generation
- Invariant Rule Mining

Two main phases:

- Predicate Generation
- Invariant Rule Mining

49

Two main phases:

- Predicate Generation
- Invariant Rule Mining

doors = ON \land velocity = 0m/s \land brakes = ON , \land distance=0 \Rightarrow M = on_station doors = OFF \land velocity > 0m/s \land acceleration>0m/s \land brakes = OFF , \land distance<40 \Rightarrow M = leaving station doors = OFF \land 0 m/s < velocity < 20m/s \land distance>40 \Rightarrow M = riding

- Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:
 - MinMax
 - Gradient
 - SteadyTime
 - Actuator States

Approach:

- Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:
 - **MinMax** Extracts the <u>minimum</u> and <u>maximum</u> values observed by each sensor
 - Gradient
 - SteadyTime
 - Actuator States

1. Wolsing, K., Thiemt, L., Sloun, C.v., Wagner, E., Wehrle, K., Henze, M.: Can industrial intrusion detection be simple? In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) Computer Security – ESORICS 2022. pp. 574–594. Springer Nature Switzerland, Cham (2022)

- Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:
 - MinMax Extracts the <u>minimum</u> and <u>maximum</u> values observed by each sensor
 0<Velocity<20m/s (riding)
 - Gradient
 - SteadyTime
 - Actuator States

- Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:
 - MinMax
 - **Gradient** Regarding it establishes the limits of each sensor's observed <u>slope</u>
 - SteadyTime
 - Actuator States

- Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:
 - MinMax
 - Gradient Regarding it establishes the limits of each sensor's observed <u>slope</u>
 2 m/s < slope(S.velocity) < 4 m/s (riding)
 - SteadyTime
 - Actuator States

Approach:

- Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:
 - MinMax
 - Gradient
 - SteadyTime Defines the limits of each actuator state duration
 - Actuator States

1. Wolsing, K., Thiemt, L., Sloun, C.v., Wagner, E., Wehrle, K., Henze, M.: Can industrial intrusion detection be simple? In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) Computer Security – ESORICS 2022. pp. 574–594. Springer Nature Switzerland, Cham (2022)

Approach:

- Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:
 - MinMax
 - Gradient
 - SteadyTime Defines the limits of each actuator state duration
 - Actuator States

1. Wolsing, K., Thiemt, L., Sloun, C.v., Wagner, E., Wehrle, K., Henze, M.: Can industrial intrusion detection be simple? In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) Computer Security – ESORICS 2022. pp. 574–594. Springer Nature Switzerland, Cham (2022)

- Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:
 - MinMax
 - Gradient
 - SteadyTime
 - Actuator States The different states that an actuator can assume

Approach:

Define different thresholds for each sensor/actuator based on their characteristics, using the techniques proposed by **SIMPLE-IDS** [1]:

Ex:

- MinMax
- Gradient
- SteadyTime
- Actuator States The different states that an actuator can assume

A.Doors = CLOSED (riding)

IM-DISCO - Invariant Rule Mining

Approach:

- Use **Association Rule Mining** to discover associations between the predicates that characterize the operational modes
 - 1. Frequent Itemsets Extraction
 - 2. Association Rules Generation

1. Wolsing, K., Thiemt, L., Sloun, C.v., Wagner, E., Wehrle, K., Henze, M.: Can industrial intrusion detection be simple? In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) Computer Security – ESORICS 2022. pp. 574–594. Springer Nature Switzerland, Cham (2022)

IM-DISCO - Takeaways

Provides invariant rules for inferring operational modes within CPS

Allows the detection of anomalies that can be verified by human experts

40m/s < S.velocity < 100m/s \land 10s < A.throttle = ON < 50s \Rightarrow *riding*

Evaluation

Evaluation 1

INO

Real Train Dataset:

- Data collection using *Strava* mobile app
- Sensors and actuators derived based on GPS coordinates
- Operation mode collected based on observation
- Dataset uses two train rides

Ride	Stops	Time	Datapoints
Departure ride	12	35 minutes 22 seconds	2122
Return ride	12	34 minutes 28 seconds	2068

Can IM-DISCO infer the correct operational mode?

- Trained IM-DISCO with 80% of the dataset, and tested with 20%

	Precision		Re	call	F1-s	core	Accuracy	
	R_d	R_r	R_d	R_r	R_d	R_r	R_d	R_r
$\operatorname{arriving_station}$	100%	100%	98.53%	97.89%	99.26%	98.94%		
$leaving_station$	100%	43.75%	100%	100%	100%	60.87%		
on_station	100%	100%	100%	100%	100%	100%		
riding	99.60%	100%	99.60%	93.21%	99.60%	96.48%		
IM-DISCO	99.90%	85.94%	99.53%	98.22%	99.71%	89.07%	99.29%	$\boldsymbol{95.17\%}$

Can IM-DISCO infer the correct operational mode?

- Trained IM-DISCO with 80% of the dataset, and tested with 20%

	Precision		\mathbf{Re}	call	F1-s	score	e Accuracy	
	R_d	R_r	R_d	R_r	R_d	R_r	R_d	R_r
$\operatorname{arriving_station}$	100%	100%	98.53%	97.89%	99.26%	98.94%		
$leaving_station$	100%	43.75%	100%	100%	100%	60.87%		
on_station	100%	100%	100%	100%	100%	100%		
riding	99.60%	100%	<u>99.60%</u>	93.21%	<u>99.60%</u>	96.48%		
IM-DISCO	99.90%	85.94%	99.53%	98.22%	99.71%	89.07%	99.29 %	95.17%

Can IM-DISCO infer the correct operational mode?

- Trained IM-DISCO with 80% of the dataset, and tested with 20%

	Precision		Re	call	F1-score		Accuracy	
	R_d	R_r	R_d	R_r	R_d	R_r	R_d	R_r
$\operatorname{arriving_station}$	100%	100%	98.53%	97.89%	99.26%	98.94%		
$leaving_station$	100%	43.75%	100%	100%	100%	60.87%		
on_station	100%	100%	100%	100%	100%	100%		
riding	99.60%	100%	99.60%	93.21%	99.60%	96.48%		
IM-DISCO	99.90%	85.94%	99.53%	98.22%	99.71%	89.07%	99.29%	95.17%

Can IM-DISCO infer the correct operational mode?

- Trained IM-DISCO with 80% of the dataset, and tested with 20%

	Precision		Re	call	F1-s	core Accuracy		iracy
	R_d	R_r	R_d	R_r	R_d	R_r	R_d	R_r
arriving_station	100%	100%	98.53%	97.89%	99.26%	98.94%		
leaving_station	100%	43.75%	100%	100%	100%	60.87%		
on_station	100%	100%	100%	100%	100%	100%		
riding	99.60%	100%	99.60%	93.21%	99.60%	96.48%		
IM-DISCO	99.90%	85.94%	99.53%	98.22%	99.71%	89.07%	99.29%	95.17%

Evaluation 2

IN@V

Simulated Train Dataset:

- Data artificially generated
- Same sensors, actuators and operational modes
- Dataset uses one train ride
- Includes an attack that disrupts the brakes of the train

Ride	Stops	Time	Datapoints
Simulated ride	13	48 minutes	1697

Results 3 - Anomaly Detection

Can IM-DISCO be used for anomaly detection?

Trained IM-DISCO with 80% of the dataset, and tested with 20% containing an attack

	Precision	Recall	F1-score	Accuracy
anomaly	95.24%	100%	97.56%	
arriving_station	100%	99.56%	99.78%	
leaving_station	100%	100%	100%	
on_station	100%	100%	100%	
riding	100%	100%	100%	
IM-DISCO	99.05%	99.91%	99.47%	99.86%

Table 2. Results of using invariant rules for anomaly detection in a simulated ride

Results 3 - Anomaly Detection

Can IM-DISCO be used for anomaly detection?

Trained IM-DISCO with 80% of the dataset, and tested with 20% containing an attack

	Precision	Recall	F1-score	Accuracy	r
anomaly	95.24%	100%	97.56%		
arriving_station	100%	99.56%	99.78%		
leaving_station	100%	100%	100%		
on_station	100%	100%	100%		
riding	100%	100%	100%		
IM-DISCO	99.05%	99.91%	99.47%	99.86%	

Table 2. Results of using invariant rules for anomaly detection in a simulated ride

Results 3 - Anomaly Detection

Can IM-DISCO be used for anomaly detection?

Trained IM-DISCO with 80% of the dataset, and tested with 20% containing an attack

	Precision	Recall	F1-score	Accuracy
anomaly	95.24%	100%	97.56%	
$\operatorname{arriving_station}$	100%	99.56%	99.78%	
leaving_station	100%	100%	100%	
on_station	100%	100%	100%	
riding	100%	100%	100%	
IM-DISCO	99.05%	99.91%	99.47%	99.86%

Table 2. Results of using invariant rules for anomaly detection in a simulated ride

Results 4 - Rules Verification and Validation

How much time does IM-DISCO take to generate and verify rules?

- Trained IM-DISCO with different training sizes

Graph 2. Performance of our solution across different dataset sizes

72

Results 4 - Rules Verification and Validation

How much time does IM-DISCO take to generate and verify rules?

- Trained IM-DISCO with different training sizes

Graph 2. Performance of our solution across different dataset sizes

73

Results 4 - Rules Verification and Validation

How much time does IM-DISCO take to generate and verify rules?

- Trained IM-DISCO with different training sizes

Graph 2. Performance of our solution across different dataset sizes

74

Conclusion

- IM-DISCO generates rules that infer operational modes based on sensors and actuators
- Allows anomaly detection with understandable alerts
- IM-DISCO is accurate and real-time
- Adequate for detecting cyberphysical attacks

Thank you for listening!

E-MAIL: <u>FILIPE.APOLINARIO@TECNICO.ULISBOA.PT</u> WEBPAGE: <u>HTTPS://WEB.TECNICO.ULISBOA.PT/FILIPE.APOLINARIO/</u>

####