The 2nd International Workshop on Cyber-Physical Security for Critical Infrastructures Protection (CPS4CIP 2021)

The Rise of ICS Malware: A Comparative Analysis

October 08, 2021

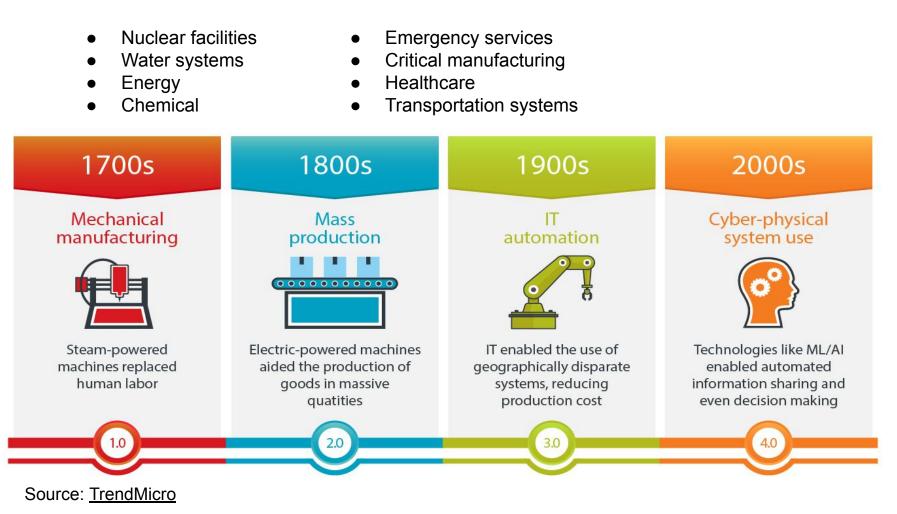
<u>Yassine Mekdad</u>¹, Giuseppe Bernieri², Mauro Conti², Abdeslam El Fergougui¹

¹Moulay Ismail University of Meknes, Morocco. ²University of Padua, Italy.

y.mekdad@edu.umi.ac.ma

Università degli Studi di Padova

SPRITZ Security & Privacy Research Group



- Introduction
- Motivations
- Background
- Proposed Framework
- Evaluation and Results
- Conclusions

Introduction (1/2)

The industrial revolution from Industry 1.0 to Industry 4.0

- Legacy industrial control systems are <u>NOT</u> built with a security-by-design approach.
- □ ICS environments are prone to *Hardware* and *Software* vulnerabilities.
- □ In the past decade, the world has witnessed a <u>rise</u> in industrial malware.

STUXNET	HAVEX	BLACKENERGY	IRONGATE	INDUSTROYER	TRITON
2010	2013	2015	2015	2016	2017

Research Questions:

- What is our understanding of the existing ICS Malware threats and their development during the past decade?
- How do adversaries operate in OT networks?

Contributions:

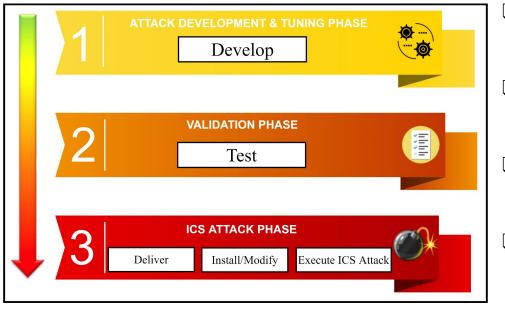
- U We develop an original **comparative analysis framework** for ICS malware.
- U We evaluate our proposed framework for **five well-known ICS malware**.
- We provide a set of <u>understanding</u> regarding the strategies used by the adversaries in OT networks.

Cyber Threat Intelligence

- Enables <u>understanding</u> the life-cycle of a malicious intrusion activity.
- Consists of gathering a complete <u>understanding</u> of the cyber threat posed by an adversary.
- Describes and characterizes the cyber threats.

Background (2/6)

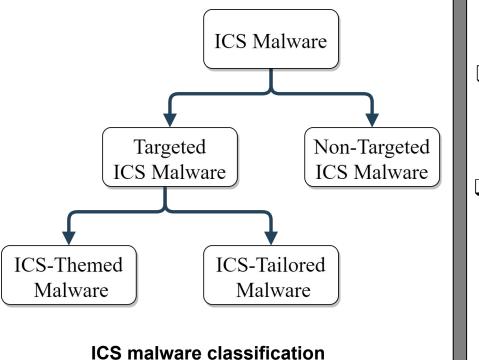
Cyber Threat Intelligence (ICS cyber Kill Chain Stage 1)


- Describe the flow of an adversary cyber attack in ICS scenarios.
- Intelligence-driven model widely used by industrial organizations.
- Enhancement of the traditional Cyber Kill Chain¹, with two stages.
- Provides a better understanding of the adversary's *tactics*, *techniques*, and *procedures* to damage an industrial network.

1: Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. 2011. Intelligence Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains. *Proceedings of the 6th International Conference on Information Warfare and Security* July 2005 (2011), 113–125.

Background (3/6)

Cyber Threat Intelligence (ICS cyber Kill Chain Stage 2)


- Describe the flow of an adversary cyber attack in ICS scenarios.
- ☐ Intelligence-driven model widely used by industrial organizations.
- Enhancement of the traditional Cyber Kill Chain¹, with two stages.
- Provides a better understanding of the adversary's *tactics*, *techniques*, and *procedures* to damage an industrial network.

1: Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. 2011. Intelligence Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains. *Proceedings of the 6th International Conference on Information Warfare and Security* July 2005 (2011), 113–125.

Industrial Malware Analysis

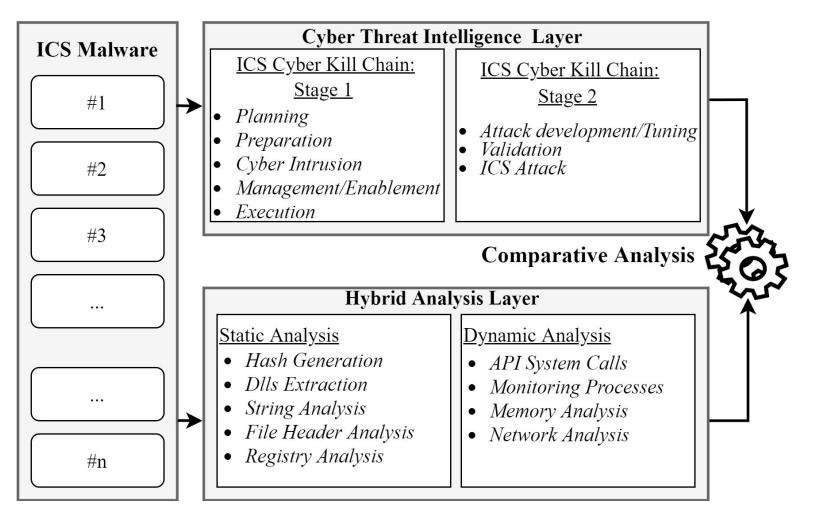
We aim to analyze ICS malware to understand the malicious intrusion activity.

- Two approaches: Static analysis and Dynamic analysis.
- □ In both approaches, we rely on the **sandboxing technology.**

Industrial Malware Analysis (Static Analysis)

In static analysis, we get ICS malware features without its execution.

- □ Fingerprinting, strings extraction, and packer detection to gather static information.
- □ The use the control flow and data flow analysis techniques to draw conclusions about the functionality of the malware.
- □ Analyze the file format and binary disassembly.


Industrial Malware Analysis (Dynamic Analysis)

<u>In **dynamic analysis**, we execute the ICS malware in a controlled and secured</u> <u>environment without compromising our live system.</u>

- □ Flow tracking.
- □ Execution control.
- □ API Function call analysis.
- Graph Execution. (e.g., Network, Processes).

Our proposed comparative analysis framework is defined in a bi-layered approach.

Experimental Industrial Malware

- □ In our comparative analysis framework, we used five well known ICS malware: *Stuxnet, Havex, BlackEnergy2, CrachOverride,* and *TRISIS*.
- □ The five **ICS malware** are obtained from public sources.
- □ We applied our <u>framework</u> for each ICS malware.

ID Malware	Name	md5 hash value			
#1	Stuxnet	68eb6d3adc49da0a79aff2202bbb3bea			
#2	Havex	1080e27b83c37dfeaa0daaa619bdf478			
#3	BlackEnergy2	17b00de1c61d887b7625642bad9af954			
#4	CrashOverride	f67b65b9346ee75a26f491b70bf6091b			
#5	TRISIS	6c39c3f4a08d3d78f2eb973a94bd7718			

- ICS Cyber Kill Chain Stage 1
- In the planning and reconnaissance phase, we found that each adversary conducts his own way of gathering information from the victim.
- □ In the **preparation phase**, the adversaries weaponized specific files containing an exploit or targeted potential victims inside the facility.
- In the cyber intrusion phase, the initial access to the victim's network mostly relied on existing vulnerabilities or through <u>zero-days.</u>
- □ In the **management and enablement phase**, most of ICS malware utilize Command & Control servers to persist into the IT network.
- □ In the **execution phase**, the adversary possess the required capabilities to compromise industrial components.

Università

DEGLI STUDI

DI PADOVA

SPRITZ

SECURITY & PRIVACY

RESEARCH GROUP

Cyber Threat Intelligence Layer Evaluation

ICS Cyber Kill Chain - Stage 2 \succ

- □ In the **attack development phase**, we found that each adversary develop a tailored capability to target specific ICS devices.
- □ In the **validation phase**, the adversaries test their capabilities in similar ICS scenario to validate the malicious intrusion.
- □ In the ICS attack phase, the adversaries disrupt and compromise the targeted ICS environment.

Hybrid Analysis Layer Evaluation

Dynamic Linked Libraries Analysis

DLLs	S	H	B	С	Т
ADVAPI32.dll	✓	✓	✓	 ✓ 	×
COMCTL32.dll	×	~	×	×	×
CRYPT32.dll	×	×	×	~	×
DNSAPI.dll	✓	×	×	×	×
GDI32.dll	×	~	×	×	×
IPHLPAPI.dll	~	×	×	×	×
KERNEL32.dll	~	~	~	~	~
MSVCR90.dll	×	×	×	×	~
NETAPI32.dll	~	×	×	×	×
OLE32.dll	~	~	×	~	×
OLEAUT32.dll	 ✓ 	×	×	 ✓ 	×
PSAPI.dll	~	×	×	×	×
RPCRT4.dll	✓	×	×	 ✓ 	×
SHELL32.dll	~	~	~	~	×
SHLWAPI.dll	\	×	 ✓ 	×	×
URLMON.dll	×	×	~	×	×
USER32.dll	\	~	✓	 ✓ 	×
USERENV.dll	~	×	×	×	×
VERSION.dll	\	~	×	×	×
WINHTTP.dll	×	×	~	×	×
WININET.dll	~	×	×	×	×
WSOCK32.dll	1	×	×	×	×

Imported by the ICS Malware X: Not imported by the ICS Malware
 Stuxnet H:Havex B:BlackEnergy2 C:CrashOverride T:TRISIS

□ KERNEL32.dll is a very common DLL used every ICS malware.

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

SPRITZ

SECURITY & PRIVACY

RESEARCH GROUP

- Stuxnet uses more libraries than any other ICS malware.
- □ TRISIS import only two DLL files: MSVCR90.dll, and KERNEL32.dll
- Each ICS malware import specific DLL files.

The Rise of ICS Malware: A comparative Analysis

- Dynamic Graph Execution of ICS malware:
 - □ High execution of *Stuxnet* and *BlackEnergy2* occurs in the operating system.
 - □ High execution of *TRISIS* and *CrashOverride* on the registry.

Categories (%)	S	H	В	C	\mathbf{T}
Exception	1.08	0	0	0.18	1.43
Resource	0	0.52	0	0.36	4.29
Process	25.27	2.79	31.43	5.83	8.57
System	51.61	5.36	41.43	31.33	31.43
Registry	9.14	17.02	11.43	35.52	50
File	4.3	5.88	10	6.74	2.86
Synchronisation	6.99	66.14	5.71	4.55	1.43
Object linking	0	0.22	0	0	0
User interface	1.61	1.94	0	0	0
Services	0	0.03	0	0	0
Network	0	0.09	0	15.48	0

The Rise of ICS Malware: A comparative Analysis

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

SPRITZ

SECURITY & PRIVACY

RESEARCH GROUP

Evaluation and Results (6/7)

ICS Malware characteristics comparison

	S	н	в	С	Т
Size	1.2MB	2.4MB	717.0KB	10.5KB	21.0KB
Date of disclosure	July, 2010	February,	October,	June,	December,
		2013	2014	2017	2017
Туре	Worm	RAT	Trojan	Backdoor	TRISIS
					malware
Number of 0-Days	5	0	0	0	1
Number of rootkits	3	0	1	0	1
Targeted Systems	Siemens	ICS	HMIs	ICS	Schneider
	Simatic	Software	products	Protocols	Electric's
	S7-300		of ICS	for	Triconex
	PLC			electrical	SIS
				engineer-	
				ing and	
				power	
				system	
				automa-	
				tion	
Payload Type	Physical	Software	Software	Software	Physical
Targeted Countries	Iran	USA and	Asia and	Ukraine	Saudi
		Europe	Europe		Arabia
Antivirus Bypass	Two cer-	Certificate	code ob-	N/A	N/A
	tificates	looks like	fuscation		
	(Realtek	signed by			
	and	IBM			
	Jmicron)				
File modification	No	Yes	Yes	No	No
File deletion	No	Yes	No	Yes	No
Registry Modification	No	yes	No	No	No
Registry Deletion	No	yes	No	No	No
Number of Sections	7	5	5	5	4
Number of imported Dlls	16	8	8	7	2
Number of functions	3359	79	164	46	74
S:Stuxnet H:Havex	B:BlackEn	nergy2 C:Cr	ashOverrid	e T:TRISI	S

□ The size of ICS malware is decreasing.

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

SPRITZ

SECURITY & PRIVACY

RESEARCH GROUP

- □ The two recent ICS malware do not need to bypass antivirus.
- ICS malware with a physical payload do not perform actions on files and registries.
- The number of 0-days and rootkits decreased in the past decade.
- The number of imported DLLs and functions used by each ICS malware decreased.

The Rise of ICS Malware: A comparative Analysis

Evaluation and Results (7/7)

Security Discussion:

- ICS malware authors are lightweighting their malicious code while maintaining physical damage to ICSs.
- The necessity to adopt ICS cybersecurity standard.
- Most of existing ICS malware in the wild target specific industrial devices or software: Stuxnet(Siemens Simatic S7-300 PLC), TRISIS (Schneider Electric's Triconex SIS), Havex (ICS software), BlackEnergy2 (HMI products).
- The need to consider a specific defense-in-depth strategy according to the existing ICS architecture.
- □ ICS Malware are built upon the combination of **inside knowledge**, **advanced skills**, and **vast resources**.

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

SPRITZ

SECURITY & PRIVACY

RESEARCH GROUP

- We presented the first comparative analysis framework of ICS Malware cyber attacks in a bi-layered approach.
- We evaluated our framework using five well-known ICS malware from two different points of view: A Cyber Threat Intelligence Layer and a Hybrid Analysis Layer.
- We demonstrated that the cyber threat intelligence is helpful to understand the general behavior of ICS malware, and the hybrid ICS malware analysis reinforces the correlation of the obtained results.
- Our investigation can help to develop a standardized set of expectations for the next generations of ICS malware-based cyber attacks.
- ❑ We can use our approach to ascend from case studies to general theoretical models.

Thank you for you Attention!

<u>Yassine Mekdad</u> y.mekdad@edu.umi.ac.ma