You are here
Silvio Ranise
 Email:
 Phone: 0461314192
 FBK Povo
Silvio Ranise received his Ms. Eng. in 1997 at the University of Genova (Italy) and his PhD in Computer Engineering from the University of Genova (Italy) and the University H. Poincare ́ (Nancy, France) in 2002 in the context of a joint PhD program between Italy and France. He works at FBK in the S&T Research Unit as Senior Researcher since April 2010. His previous appointments are: assistant professor at the U. H. Poincare ́ in 20012002, INRIA researcher at the LORIA computer science laboratory of Nancy in 20022008, research associate at the University of Verona (in the context of the EU Project AVANTSSAR) in 20082010, visiting professor at the Department of Computer Science of the University of Milano. His research focuses on formal methods for the automatic analysis of securitysensitive applications and he has published more than 65 papers in international conferences and journals on automated analysis of security policies, infinite state model checking, and Satisfiability Modulo Theories (SMT) solving. He has been initiator and coordinator of the SMTLib initiative, and started the SMT workshop series on SMT techniques. He has also given tutorials on SMT and infinite state model checking techniques at international conferences. In 2010, he received the HVC award for his “pivotal and continuous role in building and promoting the SMT community.”

Marco Bozzano; Roberto Bruttomesso; Alessandro Cimatti; Tommi Junttila; Silvio Ranise; Peter van Rossum; Roberto Sebastiani,Efficient Satisfiability Modulo Theories via Delayed Theory Combination,Proceeding of 17th Int. Conference on Computer Aided Verification,Springer,vol.3576,2005, pp. 335349, (CAV,University of Edinburgh, Scotland, UK,610/07/2005)

M. Bozzano; R. Bruttomesso; A. Cimatti; T. Antero Junttila; S. Ranise; Rossum Peter van; R. Sebastiani,Efficient Theory Combination via Boolean Search,Many approaches to the decision of quantifier free formulae with respect to a background theory T  also known as Satisfiability Modulo Theory, or SMT(T)  rely on the integration between an enumerator of truth assignments and a decision procedure for conjunction of literals in T. When the background theory is the combination T1 U T2 of two simpler theories, the approach is typically instantiated by means of a combination schema (e.g. NelsonOppen, Shostak).
In this paper we propose a new approach to SMT(T1 U T2), where the enumerator of truth assignments is integrated with two decision procedures for T1 and for T2, which act independently from each other. The key idea is to search for a truth assignment not only to the atoms occurring in the purified formula, but also to all the equalities between interface variables.
This approach is simple and expressive: for instance, no modification is required to handle nonconvex theories (as opposed to traditional NelsonOppen combinations which require a mechanism for splitting). Furthermore, it can be made practical by leveraging on stateoftheart boolean and SMT search techniques, and on theory layering (i.e. cheaper reasoning first, and more often).
We provide thorough experimental evidence to support our claims: we instantiate the framework with two decision procedures for the combinations of Equality and Uninterpreted Functions (EUF) and Linear Arithmetic (LA), both for (the convex case of) reals and for (the nonconvex case of) integers; we analyze the impact of the different optimizations on a variety of test cases; and we compare the approach with competitor tools, obtaining speedups up to two orders of magnitude,2005 
M. Bozzano; R. Brutomesso; A. Cimatti; T. A. Junttila; S. Ranise; Rossen Peter van; R. Sebastiani,Efficient Satisfiability Modulo Theories via Delayed Theory Combination,The problem of deciding the satisfiability of a quantifierfree formula with respect to a background theory, also known as Satisfiability Modulo Theories (smt), is gaining increasing relevance in verification: representation capabilities beyond propositional logic allow for a natural modeling of realworld problems (e.g., pipeline and RTL circuits verification, proof obligations in software systems).
In this paper, we focus on the case where the background theory is the combination T1 U T2 of two simpler theories. Many smt procedures combine a boolean model enumeration with a decision procedure for T1 U T2, where conjunctions of literals can be decided by an integration schema such as NelsonOppen, via a structured exchange of interface formulae (e.g., equalities in the case of convex theories, disjunctions of equalities otherwise).
We propose a new approach for SMT(T1 U T2), called Delayed Theory Combination, which does not require a decision procedure for T1 U T2, but only individual decision procedures for T1 and T2, which are directly integrated to the boolean model enumerator.
This approach is much simpler and natural, allows each of the solvers to be implemented and optimized without taking into account the others, and it nicely encompasses the case of nonconvex theories.
We show the effectiveness of the approach by a thorough experimental comparison,2005 
J. F.. Couchot; A. Giorgetti; D. Deharbe; S. Ranise,Scalable Automated Proving and Debugging of SetBased Specfications,in «JOURNAL OF THE BRAZILIAN COMPUTER SOCIETY»,vol. 2,n. 9,2004

S. Ranise; C. Ringeissen; D. K. Tran,NelsonOppen, Shostak and the Extended Canonizer: A Family Picture with a Newborn,2004, (Theoretical Aspects of Computing  ICTAC 2004 First International Colloquium,Guiyang, China,09/20/2004 a 09/24/2004)

D. Déharbe; A. Imine; S. Ranise,AbstractionDriven Verification of Array Programs,2004, (Artificial Intelligence and Symbolic Computation 7th International Conference, AISC 2004,Linz, Austria,09/22/2004 a 09/24/2004)

Armando A.; Bonacina M.P.; Sehgal A. K.; Ranise S.; Rusinowitch M.,High Performance Deduction for verification: a case study in the theory of arrays,Proceedings of the 2nd Verification Workshop (VERIFY02),2002, pp. 103112, (2nd Verification Workshop (VERIFY02),Copenhagen, Denmark,2526/07/2002)

ARMANDO A.; COGLIO A.; GIUNCHIGLIA F.; RANISE S.,The Control Component of Open Mechanized Reasoning Systems: Annotation and Tactics,in «JOURNAL OF SYMBOLIC COMPUTATION»,vol. 32,2001, pp. 305 332

ARMANDO A.; RANISE S.,A Practical Extension Mechanism for Decision Procedures:
the Case Study of Universal Presburger Arithmetic,in «JOURNAL OF UNIVERSAL COMPUTER SCIENCE»,vol. 7 (issue 2),2001, pp. 124 140 
Armando A.; Kohlhase M.; Ranise S.,Coommunication Protocols for Mathematical Services based on KQML and OMRS,Symbolic Computation and Automated Reasoning : The Calculemus2000 Symposium,NATICK, MA,AK Peters, Ltd.,2001, pp. 33 48